Czasopisma
Czasopisma
Czasopisma
ATEST - OCHRONA PRACY
ATEST - OCHRONA PRACY
AURA
AURA
AUTO MOTO SERWIS
AUTO MOTO SERWIS
CHEMIK
CHEMIK
CHŁODNICTWO
CHŁODNICTWO
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
DOZÓR TECHNICZNY
DOZÓR TECHNICZNY
ELEKTROINSTALATOR
ELEKTROINSTALATOR
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
Czasopisma
Czasopisma
Czasopisma
GAZETA CUKROWNICZA
GAZETA CUKROWNICZA
GAZ, WODA I TECHNIKA SANITARNA
GAZ, WODA I TECHNIKA SANITARNA
GOSPODARKA MIĘSNA
GOSPODARKA MIĘSNA
GOSPODARKA WODNA
GOSPODARKA WODNA
HUTNIK - WIADOMOŚCI HUTNICZE
HUTNIK - WIADOMOŚCI HUTNICZE
INŻYNIERIA MATERIAŁOWA
INŻYNIERIA MATERIAŁOWA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MATERIAŁY BUDOWLANE
MATERIAŁY BUDOWLANE
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZED KOROZJĄ
OCHRONA PRZED KOROZJĄ
Czasopisma
Czasopisma
Czasopisma
ODZIEŻ
ODZIEŻ
OPAKOWANIE
OPAKOWANIE
PACKAGING REVIEW
PACKAGING REVIEW
POLISH TECHNICAL REVIEW
POLISH TECHNICAL REVIEW
PROBLEMY JAKOŚCI
PROBLEMY JAKOŚCI
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD PAPIERNICZY
PRZEGLĄD PAPIERNICZY
Czasopisma
Czasopisma
Czasopisma
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ SPOŻYWCZY
PRZEMYSŁ SPOŻYWCZY
RUDY I METALE NIEŻELAZNE
RUDY I METALE NIEŻELAZNE
SZKŁO I CERAMIKA
SZKŁO I CERAMIKA
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
WIADOMOŚCI ELEKTROTECHNICZNE
WIADOMOŚCI ELEKTROTECHNICZNE
WOKÓŁ PŁYTEK CERAMICZNYCH
WOKÓŁ PŁYTEK CERAMICZNYCH
Menu
Menu
Menu
Prenumerata
Prenumerata
Publikacje
Publikacje
Drukarnia
Drukarnia
Kolportaż
Kolportaż
Reklama
Reklama
O nas
O nas
ui-button
Twój Koszyk
Twój koszyk jest pusty.
Niezalogowany
Niezalogowany
Zaloguj się
Zarejestruj się
Reset hasła
Czasopismo
|
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
|
Rocznik 2024 - zeszyt 4
Zastosowanie atencji w sieciach neuronowych do zaawansowanego znakowania wodnego obrazów w wysokiej rozdzielczości: Analiza efektywności i metryk
Application of Attention in Neural Networks for Advanced Watermarking of High-Resolution Images: Efficiency and Metrics Analysis
10.15199/59.2024.4.41
Paweł Duszejko
Zbigniew Piotrowski
nr katalogowy: 150430
10.15199/59.2024.4.41
Streszczenie
W artykule prezentujemy innowacyjny algorytm znakowania wodnego obrazów, wykorzystujący głębokie sieci neuronowe z modułem atencji. Proponowane rozwiązanie pozwala na wysoce transparentne zakodowanie ukrytego znacznika w obrazach o wysokiej rozdzielczości, zachowując ich oryginalną jakość. Dzięki zastosowaniu miękkiej atencji, nasz system osiąga doskonałe wyniki w zakresie odporności znaków wodnych. Demonstrujemy efektywność metody na przykładach wraz z wykazem metryk.
Abstract
In the article, we present an innovative image watermarking algorithm that utilizes deep neural networks with an attention module. The proposed solution allows for highly transparent encoding of a hidden watermark in high-resolution images, while preserving their original quality. Thanks to the use of soft attention, our system achieves excellent results in terms of watermark durability. We demonstrate the effectiveness of the method with examples and a list of metrics.
Słowa kluczowe
Znakowanie wodne
uczenie głębokie
przetwarzanie obrazu
miękka atencja
Keywords
Watermarking
deep learning
image processing
soft attention
Bibliografia
[1] Ronneberger, Olaf & Fischer, Philipp & Brox, Thomas. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. LNCS. 9351. 234-241. 10.1007/978-3-319-24574-4_28. [2] Oktay, Ozan & Schlemper, Jo & Folgoc, Loic & Lee, Matthew & Heinrich, Mattias & Misawa, Kazunari & Mori, Kensaku & McDonagh, Steven & Hammerla, Nils & Kainz, Bernhard & Glocker, Ben & Rueckert, Daniel. (2018). Attention U-Net: Learning Where to Look for the Pancreas. [3] Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden: Hiding data with deep netorks. In proceedings of the European Conference on Computer Vision (ECCV), pages 657-672,2018. [4] Xinyu Weng, Yongzhi Li, Lu Chi, and Yadong Mu. High- capacity convolutional video steganography with temporal residua modeling. In Proceedings of the 2019 on Interna-tional Conference on Multimedia Retrieval, pages 87-95, 2019. [5] J. Jing, X. Deng, M. Xu, J. Wang and Z. Guan, „HiNet: Deep Image Hiding by Invertible Network,” 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021, pp. 4713-4722, doi: 10.1109/ICCV48922.2021.00469. keywords:{Training;Learning systems;Computer vision;Wavelet domain;Codes;Neural networks;Receivers;Low-level and physics-based vision;Vision applications and systems} [6] Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. (2018). The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR.. [7] E. Riba, D. Mishkin, D. Ponsa, E. Rublee and G. Bradski, „Kornia: an Open Source Differentiable Computer Vision Library for PyTorch, „2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA, 2020, pp. 3663-3672, doi: 10.1109/WACV45572.2020.9093363. [8] C. Reich, B. Debnath, D. Patel and S. Chakradhar, „Differentiable JPEG: The Devil is in the Details,” in 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2024 pp. 4114-4123. Doi: 10.1109/WACV57701.2024.00408
Prenumerata
PRZEGLĄD TELEKOMUNIKACYJNY - prenumerata cyfrowa
licencja: Osobista
Produkt cyfrowy
Nowość
300.00 zł
Do koszyka
PRZEGLĄD TELEKOMUNIKACYJNY - papierowa prenumerata roczna + wysyłka
licencja: Osobista
Szczegóły pakietu
Nazwa
PRZEGLĄD TELEKOMUNIKACYJNY - papierowa prenumerata roczna
348.00 zł brutto
322.22 zł netto
25.78 zł VAT
(stawka VAT 8%)
PRZEGLĄD TELEKOMUNIKACYJNY - pakowanie i wysyłka
21.00 zł brutto
17.07 zł netto
3.93 zł VAT
(stawka VAT 23%)
369.00 zł
Do koszyka
PRZEGLĄD TELEKOMUNIKACYJNY - PAKIET prenumerata PLUS
licencja: Osobista
Szczegóły pakietu
Nazwa
PRZEGLĄD TELEKOMUNIKACYJNY - PAKIET prenumerata PLUS (Prenumerata papierowa + dostęp do portalu sigma-not.pl + e-prenumerata)
450.00 zł brutto
416.67 zł netto
33.33 zł VAT
(stawka VAT 8%)
450.00 zł
Do koszyka
Open Access
Zeszyt
2024-4
Czasopisma
ATEST - OCHRONA PRACY
AURA
AUTO MOTO SERWIS
CHEMIK
CHŁODNICTWO
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
DOZÓR TECHNICZNY
ELEKTROINSTALATOR
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
GAZETA CUKROWNICZA
GAZ, WODA I TECHNIKA SANITARNA
GOSPODARKA MIĘSNA
GOSPODARKA WODNA
HUTNIK - WIADOMOŚCI HUTNICZE
INŻYNIERIA MATERIAŁOWA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MATERIAŁY BUDOWLANE
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZED KOROZJĄ
ODZIEŻ
OPAKOWANIE
PACKAGING REVIEW
POLISH TECHNICAL REVIEW
PROBLEMY JAKOŚCI
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD PAPIERNICZY
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ SPOŻYWCZY
RUDY I METALE NIEŻELAZNE
SZKŁO I CERAMIKA
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
WIADOMOŚCI ELEKTROTECHNICZNE
WOKÓŁ PŁYTEK CERAMICZNYCH