Czasopisma
Czasopisma
Czasopisma
ATEST - OCHRONA PRACY
ATEST - OCHRONA PRACY
AURA
AURA
AUTO MOTO SERWIS
AUTO MOTO SERWIS
CHEMIK
CHEMIK
CHŁODNICTWO
CHŁODNICTWO
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
DOZÓR TECHNICZNY
DOZÓR TECHNICZNY
ELEKTROINSTALATOR
ELEKTROINSTALATOR
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
Czasopisma
Czasopisma
Czasopisma
GAZETA CUKROWNICZA
GAZETA CUKROWNICZA
GAZ, WODA I TECHNIKA SANITARNA
GAZ, WODA I TECHNIKA SANITARNA
GOSPODARKA MIĘSNA
GOSPODARKA MIĘSNA
GOSPODARKA WODNA
GOSPODARKA WODNA
HUTNIK - WIADOMOŚCI HUTNICZE
HUTNIK - WIADOMOŚCI HUTNICZE
INŻYNIERIA MATERIAŁOWA
INŻYNIERIA MATERIAŁOWA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MATERIAŁY BUDOWLANE
MATERIAŁY BUDOWLANE
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZED KOROZJĄ
OCHRONA PRZED KOROZJĄ
Czasopisma
Czasopisma
Czasopisma
ODZIEŻ
ODZIEŻ
OPAKOWANIE
OPAKOWANIE
PACKAGING REVIEW
PACKAGING REVIEW
POLISH TECHNICAL REVIEW
POLISH TECHNICAL REVIEW
PROBLEMY JAKOŚCI
PROBLEMY JAKOŚCI
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD PAPIERNICZY
PRZEGLĄD PAPIERNICZY
Czasopisma
Czasopisma
Czasopisma
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ SPOŻYWCZY
PRZEMYSŁ SPOŻYWCZY
RUDY I METALE NIEŻELAZNE
RUDY I METALE NIEŻELAZNE
SZKŁO I CERAMIKA
SZKŁO I CERAMIKA
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
WIADOMOŚCI ELEKTROTECHNICZNE
WIADOMOŚCI ELEKTROTECHNICZNE
WOKÓŁ PŁYTEK CERAMICZNYCH
WOKÓŁ PŁYTEK CERAMICZNYCH
Menu
Menu
Menu
Prenumerata
Prenumerata
Publikacje
Publikacje
Drukarnia
Drukarnia
Kolportaż
Kolportaż
Reklama
Reklama
O nas
O nas
ui-button
Twój Koszyk
Twój koszyk jest pusty.
Niezalogowany
Niezalogowany
Zaloguj się
Zarejestruj się
Reset hasła
Czasopismo
|
PRZEGLĄD ELEKTROTECHNICZNY
|
Rocznik 2024 - zeszyt 5
Impact of Signal Features on Machine Learning-Based Tool Condition Classification in the Milling Chipboard Process
Wpływ cech sygnału na klasyfikację stanu narzędzia opartą na uczeniu maszynowym w procesie frezowania płyt wiórowych
10.15199/48.2024.05.57
Agata PRZYBYŚ-MAŁACZEK
Karol SZYMANOWSKI
Jarosław KUREK
nr katalogowy: 148642
10.15199/48.2024.05.57
Streszczenie
This study investigates the impact of various signal features on machine learning-based tool condition classification in the milling chipboard process. Different machine learning models such as XGBoost, Gradient Boosting, Decision Tree and Random Forest have been applied and the signal features have been ranked based on their importance. The highest ranking signal was 'DataLow_0', contributing over 16% of the total ranking. 'DataCurrent_2' and 'DataLow_1' were identified as the second and third most influential signals. On the contrary, 'DataCurrent_1' was found to be the least influential. It's essential to consider that the relative importance of these signals can vary depending on the specific tool condition and classifier used. Although signal importance rankings provide a relative understanding of these signals, further studies applying exploratory analysis and model interpretation techniques are recommended for an explicit understanding of the nature of the relationships between these signals and the target classification. In conclusion, understanding the influence of signal features is vital for effective design and optimization of machine learning models for tool condition classification in the milling chipboard process.
Abstract
Artykuł ten przedstawia analizę wpływu różnorodnych cech sygnałowych na klasyfikację stanu narzędzia w procesie frezowania płyty wiórowej, wykorzystując metody uczenia maszynowego. W badaniu zastosowano różne modele, takie jak XGBoost, Gradient Boosting, Drzewo Decyzyjne i Las Losowy, a następnie dokonano rankingu cech sygnałowych pod kątem ich ważności. Najważniejszą cechą okazał się sygnał 'DataLow_0', który stanowił ponad 16% całkowitego rankingu. Kolejnymi ważnymi sygnałami zostały zidentyfikowane 'DataCurrent_2' oraz 'DataLow_1'. W przeciwieństwie do nich, 'DataCurrent_1' okazał się być najmniej wpływowym sygnałem. Należy podkreślić, że względna istotność tych sygnałów może różnić się w zależności od konkretnego stanu narzędzia i użytego klasyfikatora. Chociaż ranking istotności sygnałów daje ogólne zrozumienie ich roli, zaleca się dalsze badania z wykorzystaniem analizy eksploracyjnej i technik interpretacji modelu, aby dokładniej zrozumieć naturę związków między tymi sygnałami a celem klasyfikacji. Podsumowując, zrozumienie wpływu cech sygnałowych jest kluczowe dla efektywnego projektowania i optymalizacji modeli uczenia maszynowego stosowanych do klasyfikacji stanu narzędzi w procesie frezowania płyty wiórowej
Słowa kluczowe
Istotność cech sygnału
monitorowanie stanu narzędzia
uczenie maszynowe
frezowanie płyty wiórowej
Keywords
signal features importance
tool state monitoring
machine learning
milling chipboard
Bibliografia
[1] Kurek, J.; Antoniuk, I.; Górski, J.; Jegorowa, A.; Świderski, B.; Kruk, M.; Wieczorek, G.; Pach, J.; Orłowski, A.; AleksiejukGawron, J. Classifiers ensemble of transfer learning for improved drill wear classification using convolutional neural network. Mach. Graph. Vis. 2019, 28, 13–23. https://doi.org/10.22630/MGV.2019.28.1.2. [2] Osowski, S.; Kurek, J.; Kruk, M.; Górski, J.; Hoser, P.; Wieczorek, G.; Jegorowa, A.; Wilkowski, J.; Śmietańska, K.; Kossakowska, J. Developing automatic recognition system of drill wear in standard laminated chipboard drilling process. Bull. Pol. Acad. Sci. Tech. Sci. 2016, 64,633–640. https://doi.org/10.1515/bpasts-2016-0071. [3] Jegorowa, A.; Kurek, J.; Antoniuk, I.; Dołowa, W.; Bukowski, M.; Czarniak, P. Deep learning methods for drill wear classification based on images of holes drilled in melamine faced chipboard. Wood Sci. Technol. 2021, 55, 271–293. https://doi.org/10.1007/s00226-020-01245-7. [4] Świderski, B.; Antoniuk, I.; Kurek, J.; Bukowski, M.; Górski, J.; Jegorowa, A. Tool condition monitoring for the chipboard drilling process using automatic, signal-based tool state evaluation. BioResources 2022, 17, 5349–5371. https://doi.org/10.15376/biores.17.3.5349-5371. [5] Wilkowski, J.; Górski, J.; et al. Vibro-acoustic signals as a source of information about tool wear during laminated chipboard milling. Wood Res. 2011, 56, 57–66. [6] Świderski, B.; Kurek, J.; Osowski, S.; Kruk, M.; Jegorowa, A. Di- agnostic system of drill condition in laminated chipboard drilling process. In Proceedings of the MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2017; Volume 125, pp. 1–6. https://doi.org/10.1051/matecconf/201712504002. [7] Kuo, R. Multi-sensor integration for on-line tool wear estimation through artificial neural networks and fuzzy neural network. Eng. Appl. Artif. Intell. 2000, 13, 249–261. https://doi.org/10.1016/S0952-1976(00)00008-7. [8] Jegorowa, A.; Górski, J.; Kurek, J.; Kruk, M. Use of nearest neighbors (K-NN) algorithm in tool condition identification in the case of drilling in melamine faced particleboard. Maderas Cienc. Tecnol. 2020, 22, 189–196. https://doi.org/10.4067/S0718-221X2020005000205. [9] Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003. [10] Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [11] Deng, L.; Yu, D. Deep learning: Methods and applica- tions. Found. Trends-Signal Process. 2014, 7, 197– 387. https://doi.org/10.1561/2000000039. [12] Ibrahim, I.; Khairuddin, A.S.M.; Abu Talip, M.S.; Arof, H.; Yusof, R. Tree species recognition system based on macroscopic image analysis. Wood Sci. Technol. 2017, 51, 431–444. https://doi.org/10.1007/s00226- 016-0859-4. [13] Kurek, J.; Świderski, B.; Jegorowa, A.; Kruk, M.; Osowski, S. Deep learning in assessment of drill condition on the basis of images of drilled holes. In Proceedings of the Eighth International Conference on Graphic and Image Processing (ICGIP 2016), Tokyo, Japan, 29–31 October 2017; Volume 10225, pp. 375–381. https://doi.org/10.1117/12.2266254. [14] Kurek, J.; Wieczorek, G.; Kruk, B.S.M.; Jegorowa, A.; Osowski, S. Transfer learning in recognition of drill wear using convolu- tional neural network. In Proceedings of the 2017 18th Interna- tional Conference on Computational Problems of Electrical Engineer- ing (CPEE), Lviv-Slavske, Ukraine, 15–18 September 2017; pp. 1–4. https://doi.org/10.1109/CPEE.2017.8093087. [15] Kurek, J.; Antoniuk, I.; Górski, J.; Jegorowa, A.; Świderski, B.; Kruk, M.; Wieczorek, G.; Pach, J.; Orłowski, A.; AleksiejukGawron, J. Data augmentation techniques for transfer learning improvement in drill wear classification using convolutional neural network. Mach. Graph. Vis. 2019, 28, 3–12. https://doi.org/10.22630/MGV.2019.28.1.1. [16]Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. https://doi.org/10.1145/3065386. [17] Przybyś-Małaczek, A., Antoniuk, I., Szymanowski, K., Kruk, M. & Kurek, J. Application of Machine Learning Algorithms for Tool Con- dition Monitoring in Milling Chipboard Process. Sensors. 23 (2023), https://www.mdpi.com/1424- 8220/23/13/5850 [18] Kurek J., Świderski B., Jegorowa A., Kruk M., Osowski S., (2017a). Deep learning in assessment of drill condition on the basis of images of drilled holes In: International Conference on Graphic and Image Processing. ICGIP. DOI: https://doi.org/10.1117/12.2266254. [19] Jegorowa, A., Kurek, J., Antoniuk, I., Dołowa, W., Bukowski, M. & Czarniak, P. Deep learning methods for drill wear classification based on images of holes drilled in melamine faced chipboard. Wood Science And Technology. 55, 271-293 (2021,1,1), https://doi.org/10.1007/s00226-020-01245-7 [20] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. & Fei-Fei, L. ImageNet Large Scale Visual Recognition Challenge. (2015)
Treść płatna
Jeśli masz wykupiony/przyznany dostęp -
zaloguj się
.
Skorzystaj z naszych propozycji zakupu!
Publikacja
PRZEGLĄD ELEKTROTECHNICZNY- e-publikacja (pdf) z zeszytu 2024-5 , nr katalogowy 148642
licencja: Osobista
Produkt cyfrowy
Nowość
10.00 zł
Do koszyka
Zeszyt
PRZEGLĄD ELEKTROTECHNICZNY- e-zeszyt (pdf) 2024-5
licencja: Osobista
Produkt cyfrowy
Nowość
85.00 zł
Do koszyka
Prenumerata
PRZEGLĄD ELEKTROTECHNICZNY - prenumerata cyfrowa
licencja: Osobista
Produkt cyfrowy
Nowość
762.00 zł
Do koszyka
PRZEGLĄD ELEKTROTECHNICZNY - PAKIET prenumerata PLUS
licencja: Osobista
Szczegóły pakietu
Nazwa
PRZEGLĄD ELEKTROTECHNICZNY - PAKIET prenumerata PLUS (Prenumerata papierowa + dostęp do portalu sigma-not.pl + e-prenumerata)
1002.00 zł brutto
927.78 zł netto
74.22 zł VAT
(stawka VAT 8%)
1002.00 zł
Do koszyka
PRZEGLĄD ELEKTROTECHNICZNY - papierowa prenumerata roczna + wysyłka
licencja: Osobista
Szczegóły pakietu
Nazwa
PRZEGLĄD ELEKTROTECHNICZNY - papierowa prenumerata roczna
960.00 zł brutto
888.89 zł netto
71.11 zł VAT
(stawka VAT 8%)
PRZEGLĄD ELEKTROTECHNICZNY - pakowanie i wysyłka
42.00 zł brutto
34.15 zł netto
7.85 zł VAT
(stawka VAT 23%)
1002.00 zł
Do koszyka
Zeszyt
2024-5
Czasopisma
ATEST - OCHRONA PRACY
AURA
AUTO MOTO SERWIS
CHEMIK
CHŁODNICTWO
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
DOZÓR TECHNICZNY
ELEKTROINSTALATOR
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
GAZETA CUKROWNICZA
GAZ, WODA I TECHNIKA SANITARNA
GOSPODARKA MIĘSNA
GOSPODARKA WODNA
HUTNIK - WIADOMOŚCI HUTNICZE
INŻYNIERIA MATERIAŁOWA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MATERIAŁY BUDOWLANE
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZED KOROZJĄ
ODZIEŻ
OPAKOWANIE
PACKAGING REVIEW
POLISH TECHNICAL REVIEW
PROBLEMY JAKOŚCI
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD PAPIERNICZY
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ SPOŻYWCZY
RUDY I METALE NIEŻELAZNE
SZKŁO I CERAMIKA
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
WIADOMOŚCI ELEKTROTECHNICZNE
WOKÓŁ PŁYTEK CERAMICZNYCH