Czasopisma
Czasopisma
Czasopisma
ATEST - OCHRONA PRACY
ATEST - OCHRONA PRACY
AURA
AURA
AUTO MOTO SERWIS
AUTO MOTO SERWIS
CHEMIK
CHEMIK
CHŁODNICTWO
CHŁODNICTWO
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
DOZÓR TECHNICZNY
DOZÓR TECHNICZNY
ELEKTROINSTALATOR
ELEKTROINSTALATOR
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
Czasopisma
Czasopisma
Czasopisma
GAZETA CUKROWNICZA
GAZETA CUKROWNICZA
GAZ, WODA I TECHNIKA SANITARNA
GAZ, WODA I TECHNIKA SANITARNA
GOSPODARKA MIĘSNA
GOSPODARKA MIĘSNA
GOSPODARKA WODNA
GOSPODARKA WODNA
HUTNIK - WIADOMOŚCI HUTNICZE
HUTNIK - WIADOMOŚCI HUTNICZE
INŻYNIERIA MATERIAŁOWA
INŻYNIERIA MATERIAŁOWA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MATERIAŁY BUDOWLANE
MATERIAŁY BUDOWLANE
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZED KOROZJĄ
OCHRONA PRZED KOROZJĄ
Czasopisma
Czasopisma
Czasopisma
ODZIEŻ
ODZIEŻ
OPAKOWANIE
OPAKOWANIE
PACKAGING REVIEW
PACKAGING REVIEW
POLISH TECHNICAL REVIEW
POLISH TECHNICAL REVIEW
PROBLEMY JAKOŚCI
PROBLEMY JAKOŚCI
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD PAPIERNICZY
PRZEGLĄD PAPIERNICZY
Czasopisma
Czasopisma
Czasopisma
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ SPOŻYWCZY
PRZEMYSŁ SPOŻYWCZY
RUDY I METALE NIEŻELAZNE
RUDY I METALE NIEŻELAZNE
SZKŁO I CERAMIKA
SZKŁO I CERAMIKA
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
WIADOMOŚCI ELEKTROTECHNICZNE
WIADOMOŚCI ELEKTROTECHNICZNE
WOKÓŁ PŁYTEK CERAMICZNYCH
WOKÓŁ PŁYTEK CERAMICZNYCH
Menu
Menu
Menu
Prenumerata
Prenumerata
Publikacje
Publikacje
Drukarnia
Drukarnia
Kolportaż
Kolportaż
Reklama
Reklama
O nas
O nas
ui-button
Twój Koszyk
Twój koszyk jest pusty.
Niezalogowany
Niezalogowany
Zaloguj się
Zarejestruj się
Reset hasła
Czasopismo
|
PRZEGLĄD ELEKTROTECHNICZNY
|
Rocznik 2022 - zeszyt 1
Classifying Transformer Winding Fault Type, Location and Extent using FRA based on Support Vector Machine
10.15199/48.2022.01.04
Hassane Ezziane
Hamza Houassine
Samir Moulahoum
Moustafa Sahnoune Chaouche
nr katalogowy: 135335
10.15199/48.2022.01.04
Streszczenie
In this paper, four common winding faults in power transformers (axial displacement (AD), serial capacitance variation (VSC), ground capacitance variation (VGC), open circuit (OC)) are simulated on a transformer winding model to classify the fault type, location and extent, by applying an intelligent methodology for diagnosing transformer faults, depends on building a comprehensive database by collecting Frequency Responses Analysis (FRA) related to health and faulty conditions and analyzing them using statistical and mathematical indicators, this base that can inventory all possible faults in terms of location and extent, which is used to train a support vector machine (SVM) classifier on the faults included in it, which is then able to classify any new data . The results of the tests showed that the proposed method is characterized by high accuracy in detecting the type of defect, determining its location and the extent of its occurrence, It also contributes to the development of the application of machine learning on transformers.
Abstract
W tym artykule symulowane są cztery typowe uszkodzenia uzwojeń w transformatorach mocy (przemieszczenie osiowe (AD), szeregowa zmiana pojemności (VSC), zmiana pojemności uziemienia (VGC), obwód otwarty (OC)) na modelu uzwojenia transformatora w celu sklasyfikowania typu zwarcia , lokalizacji i zasięgu, poprzez zastosowanie inteligentnej metodologii diagnozowania uszkodzeń transformatorów, polega na zbudowaniu kompleksowej bazy danych poprzez zbieranie Analizy Odpowiedzi Częstotliwości (FRA) związanej ze stanami zdrowia i wadliwymi oraz analizowanie ich za pomocą wskaźników statystycznych i matematycznych, tej bazy, która może inwentaryzować wszystkie możliwych błędów pod względem lokalizacji i zasięgu, który jest używany do trenowania klasyfikatora maszyny wektora nośnego (SVM) na zawartych w nim błędach, który jest następnie w stanie sklasyfikować dowolne nowe dane. Wyniki badań wykazały, że proponowana metoda charakteryzuje się dużą dokładnością w wykrywaniu rodzaju defektu, określaniu jego lokalizacji oraz zasięgu jej występowania, przyczynia się również do rozwoju zastosowania uczenia maszynowego na transformatorach. (Klasyfikacja typu, lokalizacji i zakresu uszkodzenia uzwojenia transformatora za pomocą FRA w oparciu o maszynę wektora nośnego
Słowa kluczowe
Frequency response analysis (FRA)
support vector machine (SVM)
winding faults
diagnostic
Keywords
Odpowiedź częstotliwościowa
uszkodzeni uzwojenia
Bibliografia
[1] Samimi, M.H., Tenbohlen, S.: ‘Using the temperature dependency of the FRA to evaluate the pressure of the transformer press ring’, IEEE Trans. Power Deliv., 2018, 33, (4), pp. 2050–2052 [2] Abbasi, A., Seifi, A.: ‘Fast and perfect damping circuit for ferroresonance phenomena in coupling capacitor voltage transformers’, Electr. Power Compon. Syst., 2009, 37, (4), pp. 393–402 [3] Bagheri, M., Phung, B., Blackburn, T.: ‘Influence of temperature and moisture content on frequency response analysis of transformer winding’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (3), pp. 1393–1404 [4] Mariprasath, T., Kirubakaran, V.: ‘A real time study on condition monitoring of distribution transformer using thermal imager’, Infrared Phys. Technol., 2018, 90, pp. 78–86 [5] Roncero-Clemente, C., Roanes-Lozano, E. ‘A multi-criteria computer package for power transformer fault detection and diagnosis’, Appl. Math. Comput., 2017, 319, pp. 153–1642 [6] Abu -Siada, A., Islam, S.: ‘A new approach to identify power transformer criticality and asset management decision based on dissolved gas-in-oil analysis’, IEEE Trans Dielectr. Electr. Insul., 2012, 19, (3), pp. 1007–1012 [7] Huang, Y.C., Sun, H.C.: ‘Dissolved gas analysis of mineral oil for power transformer fault diagnosis using fuzzy logic’, IEEE Trans. Dielectrics Electr. Insul., 2013, 20, (3), pp. 974–981 [8] Blennow, J., Ekanayake, C., Walczak, K., et al.: ‘Field experiences with measurements of dielectric response in frequency domain for power transformer diagnostics’, IEEE Trans. Power Deliv., 2006, 21, (2), pp. 681– 688 [9] Gubansky, S.M., Boss, P., Csépes, G., et al.: ‘Dielectric response methods for diagnostics of power transformers’, IEEE Electr. Insul. Mag., 2003, 19, (2), pp. 12–18 [10] Zheng, J., Pan, J., Huang, H.: ‘An experimental study of winding vibration of a single-phase power transformer using a laser Doppler vibrometer’, Appl. Acoust., 2015, 87, pp. 30–37 [11] Zhou, H., Hong, K., Huang, H., et al.: ‘Transformer winding fault detection by vibration analysis methods’, Appl. Acoust., 2016, 114, pp. 136–146 [12] Wang, Y., Pan, J.: ‘Comparison of mechanically and electrically excited vibration frequency responses of a small distribution transformer’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 1173–1180 [13] Hashemnia, N., Abu-Siada, A., & Islam, S. (2013). Impact of axial displacement on power transformer FRA signature. IEEE Power & Energy Society General Meeting. doi:10.1109/pesmg.2013.6672949 . [14] Pleite, J., Gonzalez, C., Vazquez, J., & Lazaro, A. (n.d.).(2006). Power Transfomer Core Fault Diagnosis Using Frequency Response Analysis. MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference. doi:10.1109/melcon.2006.1653298 [15] Rahimpour, E., Christian, J., Feser, K., & Mohseni, H. (2003). Transfer function method to diagnose axial displacement and radial deformation of transformer windings. IEEE Transactions on Power Delivery, 18(2), 493–505. doi:10.1109/tpwrd.2003.809692 [16] Ryder, S. A. (n.d.).(2002). Transformer diagnosis using frequency response analysis: results from fault simulations. IEEE Power Engineering Society Summer Meeting,. doi:10.1109/pess.2002.1043265 . [17] Bagheri, M., Naderi, M.S., Blackburn, T.R.(2012). A case study on FRA capability in detection of mechanical defects within a 400 MVA transformer. CIGRE, Paris, France, pp. 1–9 . [18] Behjat, V., Vahedi, A., Setayeshmehr, A., Borsi, H., & Gockenbach, E. (2011). Diagnosing Shorted Turns on the Windings of Power Transformers Based Upon Online FRA Using Capacitive and Inductive Couplings. IEEE Transactions PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 98 NR 1/2022 33 on Power Delivery, 26(4), 2123–2133. doi:10.1109/tpwrd.2011.2151285 . [19] Pourhossein, K., Gharehpetian, G. B., Rahimpour, E., & Araabi, B. N. (2012). A probabilistic feature to determine type and extent of winding mechanical defects in power transformers. Electric Power Systems Research, 82(1), 1–10. doi:10.1016/j.epsr.2011.08.010 . [20] Rahimpour, E., Jabbari, M., & Tenbohlen, S. (2010). Mathematical Comparison Methods to Assess Transfer Functions of Transformers to Detect Different Types of Mechanical Faults. IEEE Transactions on Power Delivery, 25(4), 2544–2555. doi:10.1109/tpwrd.2010.2054840 . [21] Bigdeli, M., Vakilian, M., & Rahimpour, E. (2011). A probabilistic neural network classifier-based method for transformer winding fault identification through its transfer function measurement. International Transactions on Electrical Energy Systems, 23(3), 392–404. doi:10.1002/etep.668 . [22] Bigdeli, M., Vakilian, M., & Rahimpour, E. (2012). Transformer winding faults classification based on transfer function analysis by support vector machine. IET Electric Power Applications, 6(5), 268. doi:10.1049/iet-epa.2011.0232 . [23] Moradzadeh, A., & Pourhossein, K. (2019). Application of Support Vector Machines to Locate Minor Short Circuits in Transformer Windings. 2019 54th International Universities Power Engineering Conference (UPEC). doi:10.1109/upec.2019.8893542 . [24] Tarimoradi, H., & Gharehpetian, G. B. (2017). Novel Calculation Method of Indices to Improve Classification of Transformer Winding Fault Type, Location, and Extent. IEEE Transactions on Industrial Informatics, 13(4), 1531–1540. doi:10.1109/tii.2017.2651954 . [25] J. Liu, Z. Zhao, C. Tang, C. Yao, C. Li and S. Islam, "Classifying Transformer Winding Deformation Fault Types and Degrees Using FRA Based on Support Vector Machine," in IEEE Access, vol. 7, pp. 112494-112504, 2019, doi: 10.1109/ACCESS.2019.2932497. [26] [Rahimpour, E., Christian, J., Feser, K., & Mohseni, H. (2003). Transfer function method to diagnose axial displacement and radial deformation of transformer windings. IEEE Transactions on Power Delivery, 18(2), 493– 505. doi:10.1109/tpwrd.2003.809692. [27] Ragavan, K., & Satish, L. (2008). Construction of Physically Realizable Driving-Point Function From Measured Frequency Response Data on a Model Winding. IEEE Transactions on Power Delivery, 23(2), 760– 767. doi:10.1109/tpwrd.2008.915815 . [28] Behjat, V., & Mahvi, M. (2015). Statistical approach for interpretation of power transformers frequency response analysis results. IET Science, Measurement & Technology, 9(3), 367–375. doi:10.1049/iet-smt.2014.0097 . [29] [Kim, J.-W., Park, B., Jeong, S. C., Kim, S. W., & Park, P. (2005). Fault Diagnosis of a Power Transformer Using an Improved Frequency-Response Analysis. IEEE Transactions on Power Delivery, 20(1), 169–178. doi:10.1109/tpwrd.2004.835428 . [30] Secue, J., & Mombello, E. (2008). New methodology for diagnosing faults in power transformer windings through the Sweep Frequency Response Analysis (SFRA). 2008 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America. doi:10.1109/tdc-la.2008.4641689 . [31] Nirgude, P.M., Ashokraju, D., Rajkumar, A.D., and al.(2008). Application of numerical evaluation techniques for interpreting frequency response measurements in power transformers, IET Sci. Meas. Technol., 2008, 2, (5), pp. 275–285 .doi: 10.1049/iet-smt:20070072 . [32] Secue, J. R., & Mombello, E. (2008). Sweep frequency response analysis (SFRA) for the assessment of winding displacements and deformation in power transformers. Electric Power Systems Research, 78(6), 1119–1128. doi:10.1016/j.epsr.2007.08.005 . [33] Xu, D.K., Fu, C.Z., Li, Y.M. (1999) .Application of artificial neural network to the detection of the transformer winding deformation. Presented at 11th Int. Symp. on High Voltage Engineering (Conf. Publ. No. 467), London, UK,vol. 5, pp. 220– 223. doi: 10.1049/cp:19990925 [34] Badgujar, K.P., Maoyafikuddin, M., Kulkarni, S.V.(2012).Alternative statistical techniques for aiding SFRA diagnostics in transformers, IET Gener. Transm. Distrib., 2012, 6, (3), pp. 189–198 .doi: 10.1049/iet-gtd.2011.0268 . [35] Vapnik, V.(1995).The nature of statistical learning theory (Springer Verlag, New York). [36] Zhao, Z., Tang, C., Zhou, Q., Xu, L., Gui, Y., & Yao, C. (2017). Identification of Power Transformer Winding Mechanical Fault Types Based on Online IFRA by Support Vector Machine. Energies, 10(12), 2022. doi:10.3390/en10122022 . [37] Avinash , Navlani . SUPPORT VECTOR MACHINES WITH SCIKIT-LEARN . datacamp, 27.Dec.2019, https://www.datacamp.com/community/tutorials/svmclassification- scikit-learn-python . accessed on Jul. 25, 2020. [38] Bacha, K., Souahlia, S., & Gossa, M. (2012). Power transformer fault diagnosis based on dissolved gas analysis by support vector machine. Electric Power Systems Research, 83(1), 73–79. doi:10.1016/j.epsr.2011.09.012 . [39] Ragavan, K., & Satish, L. (2007). Localization of Changes in a Model Winding Based on Terminal Measurements: Experimental Study. IEEE Transactions on Power Delivery, 22(3), 1557–1565. doi:10.1109/tpwrd.2006.886789 . [40] Pramanik, S., & Satish, L. (2011). Estimation of Series Capacitance of a Transformer Winding Based on Frequency- Response Data: An Indirect Measurement Approach. IEEE Transactions on Power Delivery, 26(4), 2870– 2878. doi:10.1109/tpwrd.2011.2167247 [41] Ragavan, K., & Satish, L. (2008). Construction of Physically Realizable Driving-Point Function From Measured Frequency Response Data on a Model Winding. IEEE Transactions on Power Delivery, 23(2), 760– 767. doi:10.1109/tpwrd.2008.915815 [42] Hashemnia, N., Abu-Siada, A., Masoum, M. A. S., & Islam, S. M. (2012). Characterization of transformer FRA signature under various winding faults. 2012 IEEE International Conference on Condition Monitoring and Diagnosis. doi:10.1109/cmd.2012.6416174 [43] Abu-Siada, A., & Islam, S. (2012). A Novel Online Technique to Detect Power Transformer Winding Faults. IEEE Transactions on Power Delivery, 27(2), 849–857. doi:10.1109/tpwrd.2011.2180932 [44] Pandya, A. A., & Parekh, B. R. (2014). Interpretation of Sweep Frequency Response Analysis (SFRA) traces for the open circuit and short circuit winding fault damages of the power transformer. International Journal of Electrical Power & Energy Systems, 62, 890–896. doi:10.1016/j.ijepes.2014.05.011 . [45] https://www.csie.ntu.edu.tw/~cjlin/libsvm/
Treść płatna
Jeśli masz wykupiony/przyznany dostęp -
zaloguj się
.
Skorzystaj z naszych propozycji zakupu!
Publikacja
PRZEGLĄD ELEKTROTECHNICZNY- e-publikacja (pdf) z zeszytu 2022-1 , nr katalogowy 135335
licencja: Osobista
Produkt cyfrowy
Nowość
10.00 zł
Do koszyka
Zeszyt
PRZEGLĄD ELEKTROTECHNICZNY- e-zeszyt (pdf) 2022-1
licencja: Osobista
Produkt cyfrowy
Nowość
55.00 zł
Do koszyka
PRZEGLĄD ELEKTROTECHNICZNY- e-zeszyt (pdf) 2022-10
licencja: Osobista
Produkt cyfrowy
Nowość
58.00 zł
Do koszyka
PRZEGLĄD ELEKTROTECHNICZNY- e-zeszyt (pdf) 2022-11
licencja: Osobista
Produkt cyfrowy
Nowość
58.00 zł
Do koszyka
PRZEGLĄD ELEKTROTECHNICZNY- e-zeszyt (pdf) 2022-12
licencja: Osobista
Produkt cyfrowy
Nowość
58.00 zł
Do koszyka
Prenumerata
PRZEGLĄD ELEKTROTECHNICZNY - prenumerata cyfrowa
licencja: Osobista
Produkt cyfrowy
Nowość
762.00 zł
Do koszyka
PRZEGLĄD ELEKTROTECHNICZNY - PAKIET prenumerata PLUS
licencja: Osobista
Szczegóły pakietu
Nazwa
PRZEGLĄD ELEKTROTECHNICZNY - PAKIET prenumerata PLUS (Prenumerata papierowa + dostęp do portalu sigma-not.pl + e-prenumerata)
1002.00 zł brutto
927.78 zł netto
74.22 zł VAT
(stawka VAT 8%)
1002.00 zł
Do koszyka
PRZEGLĄD ELEKTROTECHNICZNY - papierowa prenumerata roczna + wysyłka
licencja: Osobista
Szczegóły pakietu
Nazwa
PRZEGLĄD ELEKTROTECHNICZNY - papierowa prenumerata roczna
960.00 zł brutto
888.89 zł netto
71.11 zł VAT
(stawka VAT 8%)
PRZEGLĄD ELEKTROTECHNICZNY - pakowanie i wysyłka
42.00 zł brutto
34.15 zł netto
7.85 zł VAT
(stawka VAT 23%)
1002.00 zł
Do koszyka
Zeszyt
2022-1
Czasopisma
ATEST - OCHRONA PRACY
AURA
AUTO MOTO SERWIS
CHEMIK
CHŁODNICTWO
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
DOZÓR TECHNICZNY
ELEKTROINSTALATOR
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
GAZETA CUKROWNICZA
GAZ, WODA I TECHNIKA SANITARNA
GOSPODARKA MIĘSNA
GOSPODARKA WODNA
HUTNIK - WIADOMOŚCI HUTNICZE
INŻYNIERIA MATERIAŁOWA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MATERIAŁY BUDOWLANE
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZED KOROZJĄ
ODZIEŻ
OPAKOWANIE
PACKAGING REVIEW
POLISH TECHNICAL REVIEW
PROBLEMY JAKOŚCI
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD PAPIERNICZY
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ SPOŻYWCZY
RUDY I METALE NIEŻELAZNE
SZKŁO I CERAMIKA
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
WIADOMOŚCI ELEKTROTECHNICZNE
WOKÓŁ PŁYTEK CERAMICZNYCH