Czasopisma
Czasopisma
Czasopisma
ATEST - OCHRONA PRACY
ATEST - OCHRONA PRACY
AURA
AURA
AUTO MOTO SERWIS
AUTO MOTO SERWIS
CHEMIK
CHEMIK
CHŁODNICTWO
CHŁODNICTWO
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
DOZÓR TECHNICZNY
DOZÓR TECHNICZNY
ELEKTROINSTALATOR
ELEKTROINSTALATOR
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
Czasopisma
Czasopisma
Czasopisma
GAZETA CUKROWNICZA
GAZETA CUKROWNICZA
GAZ, WODA I TECHNIKA SANITARNA
GAZ, WODA I TECHNIKA SANITARNA
GOSPODARKA MIĘSNA
GOSPODARKA MIĘSNA
GOSPODARKA WODNA
GOSPODARKA WODNA
HUTNIK - WIADOMOŚCI HUTNICZE
HUTNIK - WIADOMOŚCI HUTNICZE
INŻYNIERIA MATERIAŁOWA
INŻYNIERIA MATERIAŁOWA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MATERIAŁY BUDOWLANE
MATERIAŁY BUDOWLANE
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZED KOROZJĄ
OCHRONA PRZED KOROZJĄ
Czasopisma
Czasopisma
Czasopisma
ODZIEŻ
ODZIEŻ
OPAKOWANIE
OPAKOWANIE
PACKAGING REVIEW
PACKAGING REVIEW
POLISH TECHNICAL REVIEW
POLISH TECHNICAL REVIEW
PROBLEMY JAKOŚCI
PROBLEMY JAKOŚCI
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD PAPIERNICZY
PRZEGLĄD PAPIERNICZY
Czasopisma
Czasopisma
Czasopisma
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ SPOŻYWCZY
PRZEMYSŁ SPOŻYWCZY
RUDY I METALE NIEŻELAZNE
RUDY I METALE NIEŻELAZNE
SZKŁO I CERAMIKA
SZKŁO I CERAMIKA
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
WIADOMOŚCI ELEKTROTECHNICZNE
WIADOMOŚCI ELEKTROTECHNICZNE
WOKÓŁ PŁYTEK CERAMICZNYCH
WOKÓŁ PŁYTEK CERAMICZNYCH
Menu
Menu
Menu
Prenumerata
Prenumerata
Publikacje
Publikacje
Drukarnia
Drukarnia
Kolportaż
Kolportaż
Reklama
Reklama
O nas
O nas
ui-button
Twój Koszyk
Twój koszyk jest pusty.
Niezalogowany
Niezalogowany
Zaloguj się
Zarejestruj się
Reset hasła
Czasopismo
|
PRZEGLĄD ELEKTROTECHNICZNY
|
Rocznik 2021 - zeszyt 6
Classical versus deep learning methods for anomaly detection in ECG using wavelet transformation
10.15199/48.2021.06.13
Maciej GOŁGOWSKI
Stanisław OSOWSKI
nr katalogowy: 132286
10.15199/48.2021.06.13
Streszczenie
The paper describes and compares two forms of wavelet transformation: discrete (DWT) and continuous (CWT) in the analysis of electrocardiograms (ECG) to detect the anomaly. The anomalies have been limited to two types: cardiac and congestive heart failure. Two independent approaches to the problem have been considered. One is based on discrete wavelet transformation and feature generation based on statistical parameters of the results of the transformed ECG signals. These descriptors, after selection, are delivered as the input attributes to different classifiers. The second approach applies continuous wavelet transformation of ECG signals and the resulting two-dimensional image formed in time-frequency dimensions represents the input to the convolutional neural network, which is responsible for the generation of the diagnostic features and final classification. The experiments have been performed on the publically available database Complex Physiologic Signals PhysioNet. The calculations have been done in Python. The results of both approaches: DWT and CWT have been discussed and compared.
Abstract
Artykuł predstawia dwa podejścia do wykrywania anomalii w sygnalach ECG. Jako anomalie rozważane są: arytmia i zastoinowa niewydolność serca. Podstawą analizy jest sygnał ECG poddany transformacji falkowej w dwu postaciach: transformacja dyskretna oraz transformacja ciągła. W przypadku transformacji dyskretnej sygnał ECG poddany jest dekompozycji falkowej na kilku poziomach a wyniki tej dekompozycji (sygnały szczegółowe i sygnał aproksymacyjny ostatniego poziomu) podlegają opisowi statystycznemu tworząc zbiór deskryptorów numerycznych – potencjalnych cech diagnostycznych. Po przeprowadzonej selekcji stanowią one atrybuty wejściowe dla zespołu 9 klasyfikatorów. W drugim podejściu sygnał ECG jest poddany ciągłej transformacji falkowej generując dwuwymiarową macierz w postaci obrazu. Zbiór takich obrazów podawany jest na wejście głębokiej sieci neuronowej CNN, która w jednej strukturze dokonuje jednocześnie generacji cech diagnostycznych i klasyfikacji. Eksperymenty numeryczne przeprowadzone zostały na ogólnie dostępnej bazie danych Complex Physiologic Signals PhysioNet. Wyniki eksperymentów wykazały przewagę podejścia wykorzystujacego dyskretną transformację falkową. (Porównanie metod klasycznych i uczenia głębokiego w problemie wykrywania zaburzeń ECG wykorzystując analizę falkową.)
Słowa kluczowe
anomaly detection
wavelet transform
diagnostic features of ECG
classification
CNN.
Keywords
wykrywanie anomalii
transformacja falkowa
cechy diagnostyczne ECG
klasyfikacja
CNN
Bibliografia
[1] Singh R., Mehta R., Rajpal N., Efficient wavelet families for ECG classification using neural classifiers, Procedia Computer Science, vol. 132. Pp. 11-21, 2018 [2] Rai H. M., Trivedi A., Shukla S., ECG signal processing for abnormalities detection using multi-resolution wavelet transform and Artificial Neural Network classifier, Measurement, vol. 46, 3238-3246, 2013 [3] Patil D. D., Singh R. P., ECG classification using wavelet transform and wavelet network classifier, Artificial Intelligence and Evolutionary Computations in Engineering Systems, vol. 668, pp 289-303, 2018 [4] Arumugam M., Sangaiah A. K., Arrhythmia identification and classification using wavelet centered methodology in ECG signals, Concurrency and Computation, Practice and Experience, 2019, http,//doi.org/10.1002/cpe.5553 [5] Lenis G., Pilia N., Loewe A., Schulze W. H., Dössel O., Comparison of Baseline Wander Removal Techniques considering the Preservation of ST Changes in the Ischemic ECG, A Simulation Study, Comput. & Mathematical Methods in Medicine, vol. 2017, https,//doi.org/10.1155/2017/9295029 [6] PhysioNet - The Research Resource for Complex Physiologic Signals, https,//physionet.org/ [7] Zheng B. Murugappan S., Frequency Band Analysis of Electrocardiogram (ECG) Signals for Human Emotional State Classification Using Discrete Wavelet Transform (DWT), J. Phys. Ther. Sci.., vol. 25, No 7, pp. 753–759, 2013 [8] Daubechies I., Ten lectures on wavelets, SIAM, Philadelphia, 1992 [9] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, Academic Press, London, 2011. [10] Teolis A., Computational signal processing with wavelets, Springer Science& Business Media,2012 [11] Matlab user manual, MathWorks, 2020, Natick, USA. [12] Llamedo M., Martınez J. P., Heartbeat classification using feature selection driven by database generalization criteria, IEEE Trans. Biomedical Eng., vol. 58, No 3, pp.616-25, 2011 [13] Tan P. N., Steinbach M., Kumar V., Introduction to data mining, 2014, Pearson Education Inc., Boston [14] Bulmer M. G., Principles of statistics, Courier Corporation, 2012 [15] Breiman L., Random forests, Machine Learning, vol. 45, No 11, pp. 5–32, 2001 [16] Osowski S., Sieci neuronowe do przetwarzania informacji, OWPW, 2020, Warszawa [17] Goodfellow I., Bengio Y., Courville A, Deep learning, MIT Press, Massachusetts, 2016 [18] Chollet F., Deep Learning with Python, Manning Publications Co. 2017 [19] Golgowski M., Osowski S., Anomaly detection in ECG using wavelet transformation, Int. on-line Conf. Computational Problems of Electrical Engineering, Warsaw, 2020, doi: 10.1109/CPEE50798.2020.9238709
Treść płatna
Jeśli masz wykupiony/przyznany dostęp -
zaloguj się
.
Skorzystaj z naszych propozycji zakupu!
Publikacja
PRZEGLĄD ELEKTROTECHNICZNY- e-publikacja (pdf) z zeszytu 2021-6 , nr katalogowy 132286
licencja: Osobista
Produkt cyfrowy
Nowość
10.00 zł
Do koszyka
Zeszyt
PRZEGLĄD ELEKTROTECHNICZNY- e-zeszyt (pdf) 2021-6
licencja: Osobista
Produkt cyfrowy
Nowość
55.00 zł
Do koszyka
Prenumerata
PRZEGLĄD ELEKTROTECHNICZNY - prenumerata cyfrowa
licencja: Osobista
Produkt cyfrowy
Nowość
762.00 zł
Do koszyka
PRZEGLĄD ELEKTROTECHNICZNY - PAKIET prenumerata PLUS
licencja: Osobista
Szczegóły pakietu
Nazwa
PRZEGLĄD ELEKTROTECHNICZNY - PAKIET prenumerata PLUS (Prenumerata papierowa + dostęp do portalu sigma-not.pl + e-prenumerata)
1002.00 zł brutto
927.78 zł netto
74.22 zł VAT
(stawka VAT 8%)
1002.00 zł
Do koszyka
PRZEGLĄD ELEKTROTECHNICZNY - papierowa prenumerata roczna + wysyłka
licencja: Osobista
Szczegóły pakietu
Nazwa
PRZEGLĄD ELEKTROTECHNICZNY - papierowa prenumerata roczna
960.00 zł brutto
888.89 zł netto
71.11 zł VAT
(stawka VAT 8%)
PRZEGLĄD ELEKTROTECHNICZNY - pakowanie i wysyłka
42.00 zł brutto
34.15 zł netto
7.85 zł VAT
(stawka VAT 23%)
1002.00 zł
Do koszyka
Zeszyt
2021-6
Czasopisma
ATEST - OCHRONA PRACY
AURA
AUTO MOTO SERWIS
CHEMIK
CHŁODNICTWO
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
DOZÓR TECHNICZNY
ELEKTROINSTALATOR
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
GAZETA CUKROWNICZA
GAZ, WODA I TECHNIKA SANITARNA
GOSPODARKA MIĘSNA
GOSPODARKA WODNA
HUTNIK - WIADOMOŚCI HUTNICZE
INŻYNIERIA MATERIAŁOWA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MATERIAŁY BUDOWLANE
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZED KOROZJĄ
ODZIEŻ
OPAKOWANIE
PACKAGING REVIEW
POLISH TECHNICAL REVIEW
PROBLEMY JAKOŚCI
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD PAPIERNICZY
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ SPOŻYWCZY
RUDY I METALE NIEŻELAZNE
SZKŁO I CERAMIKA
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
WIADOMOŚCI ELEKTROTECHNICZNE
WOKÓŁ PŁYTEK CERAMICZNYCH