Czasopisma
Czasopisma
Czasopisma
ATEST - OCHRONA PRACY
ATEST - OCHRONA PRACY
AURA
AURA
AUTO MOTO SERWIS
AUTO MOTO SERWIS
CHEMIK
CHEMIK
CHŁODNICTWO
CHŁODNICTWO
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
DOZÓR TECHNICZNY
DOZÓR TECHNICZNY
ELEKTROINSTALATOR
ELEKTROINSTALATOR
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
Czasopisma
Czasopisma
Czasopisma
GAZETA CUKROWNICZA
GAZETA CUKROWNICZA
GAZ, WODA I TECHNIKA SANITARNA
GAZ, WODA I TECHNIKA SANITARNA
GOSPODARKA MIĘSNA
GOSPODARKA MIĘSNA
GOSPODARKA WODNA
GOSPODARKA WODNA
HUTNIK - WIADOMOŚCI HUTNICZE
HUTNIK - WIADOMOŚCI HUTNICZE
INŻYNIERIA MATERIAŁOWA
INŻYNIERIA MATERIAŁOWA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MATERIAŁY BUDOWLANE
MATERIAŁY BUDOWLANE
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZED KOROZJĄ
OCHRONA PRZED KOROZJĄ
Czasopisma
Czasopisma
Czasopisma
ODZIEŻ
ODZIEŻ
OPAKOWANIE
OPAKOWANIE
PACKAGING REVIEW
PACKAGING REVIEW
POLISH TECHNICAL REVIEW
POLISH TECHNICAL REVIEW
PROBLEMY JAKOŚCI
PROBLEMY JAKOŚCI
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD PAPIERNICZY
PRZEGLĄD PAPIERNICZY
Czasopisma
Czasopisma
Czasopisma
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ SPOŻYWCZY
PRZEMYSŁ SPOŻYWCZY
RUDY I METALE NIEŻELAZNE
RUDY I METALE NIEŻELAZNE
SZKŁO I CERAMIKA
SZKŁO I CERAMIKA
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
WIADOMOŚCI ELEKTROTECHNICZNE
WIADOMOŚCI ELEKTROTECHNICZNE
WOKÓŁ PŁYTEK CERAMICZNYCH
WOKÓŁ PŁYTEK CERAMICZNYCH
Menu
Menu
Menu
Prenumerata
Prenumerata
Publikacje
Publikacje
Drukarnia
Drukarnia
Kolportaż
Kolportaż
Reklama
Reklama
O nas
O nas
ui-button
Twój Koszyk
Twój koszyk jest pusty.
Niezalogowany
Niezalogowany
Zaloguj się
Zarejestruj się
Reset hasła
Czasopismo
|
CHŁODNICTWO
|
Rocznik 2020 - zeszyt 4
Analiza modeli opisujących wrzenie w przepływie w kanałach konwencjonalnych
Analysis of flow boiling correlations for conventional channels
10.15199/8.2020.4.1
Blanka Jakubowska
nr katalogowy: 127762
10.15199/8.2020.4.1
Streszczenie
W artykule przedstawiona została analiza wybranych korelacji pozwalających na wyznaczenie współczynników przejmowania ciepła podczas wrzenia w przepływie, które przeznaczone są dla kanałłów o średnicach konwencjonalnych. Przedstawiona w pracy analiza została wykonana na podstawie badań eksperymentalnych dostępnych w literaturze, które prowadzone były dla pełnego zakresu zmiany stopnia suchości oraz stosunkowo szerokiego zakresu zmiany prędkości masowej. Zebrana baza danych eksperymentalnych zawiera dziesięć czynników chłodniczych, takich jak: NH 3 , CO 2, R290, R600a, R1234yf, R134a, R245fa, R236fa, R152a oraz HFE7000. Zebraną i usystematyzowaną bazę danych eksperymentalnych porównano z dostępnymi w literaturze korelacjami opisującymi wrzenie w przepływie. W przedstawionych w pracy obliczeniach wykorzystanych zostało dziewięć modeli, tj. ogólną zależność Fanga i innych, Chena, Bertscha i innych, Shaha, Gungora i Wintertona, zmodyfikowaną korelację Gungora i Wintertona, Kima i Mudawara, Wojtana i innych oraz Lillo i innych
Abstract
In the paper has been presented the analysis of selected correlations that allow the determination of heat transfer coefficients during flow boiling in conventional diameter channels. The analysis, which are presented, was carried out on the basis of experimental studies available in the literature, which were conducted for a full range of quality variation and a relatively wide range of mass velocity. The collected experimental database contains ten refrigerants such as: NH3, CO2, R290, R600a, R1234yf, R134a, R245fa, R236fa, R152a and HFE7000. The collected and systematized experimental database was compared with the correlations available in the literature, which modelling heat transfer during flow boiling. Nine models were used in the calculations presented in the paper, i.e. the general Fang et al. correlation, Chen, Bertsch et al., Shah, Gungor and Winterton, modified Gungor and Winterton, Kim and Mudawar, Wojtan et al. , and Lillo et al.
Słowa kluczowe
wrzenie w przepływie
kanał konwencjonalny
naturalne i syntetyczne czynniki chłodnicze
współczynnik przejmowania ciepła
Keywords
flow boiling
conventional channel
synthetic and natural refrigerants
heat transfer coefficient
Bibliografia
[1] United Nations Environment Program (UNEP). “Montreal Protocol on Substances that Deplete the Ozone Layer (Final Act. United Nations),” Montreal, 1987. [2] Mikielewicz D., B. Jakubowska. 2015.“Wyznaczanie współczynnika przejmowania ciepła podczas wrzenia w przepływie dwutlenku węgla”. [3] Fang X., Q. Wu, Y. Yuan. 2017. “A general correlation for saturated flow boiling heat transfer in channels of various sizes and flow directions.” Int. J. Heat Mass Transf. (107); 972 – 981. [4] Fang X., Z. Zhou, H. Wang. 2015 “Heat transfer correlation for saturated flow boiling of water.” Appl. Therm. Eng. (76): 147 –1 56. [5] Fang X. 2013, “A new correlation of flow boiling heat transfer coefficients based on R134a data.” Int. J. Heat Mass Transf. (66): 279 – 283. [6] Fang X. 2013,“A new correlation of flow boiling heat transfer coefficients for carbon dioxide.” Int. J. Heat Mass Transf. (64): 802 – 807. [7] Chen J. C. 1966. “Correlation for boiling heat transfer to saturated fluids in convective flow.” Ind. Eng. Chem. Process Des. Dev 5: 322 – 329. [8] Shah M. 1976. “A new correlation for heat transfer during boiling flow through pipes.” ASHRAE Trans. Tom. II, pp. 66 – 86. [9] Gungor K. E., R. H. S. Winterton. 1987. “Simplified general correlation for saturated flow boiling and comparisons of correlations with data.” Chem. Eng. Res. Des. (65): 148 – 156. [10] Bertsch S. S., E. A. Groll, S. V. Garimella. 2009 “A composite heat transfer correlation for saturated flow boiling in small channels.” Int. J. Heat Mass Transf. (52), 7–8: 2110 – 2118. [11] Kim S. M., I. Mudawar. 2013 “Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels - Part II. Two-phase heat transfer coefficient.” Int. J. Heat Mass Transf. (64): 1239 – 1256. [12] Liu Z., R. H. S. Winterton. 1991, “A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation.” Int. J. Heat Mass Transf. (34): 2759 – 2766. [13] Docoulombier M., S. Colasson, B. J., P. Haberschill. 2011. “Carbon dioxide flow boiling in a single microchannel – Part II: Heat transfer.” Exp. Therm. Fluid Sci. (35): 597 – 611. [14] Pamitran A. S., K.-I. Choi, J.-T. Oh, Nasruddin. 2011. “Evaporation heat transfer coefficient in single circular small tubes for flow natural refrigerants of C3H8, NH3 and CO2.” Int. Multiph. Flow. (37): 794 – 801. [15] Mastrullo R., A. W. Mauro, A. Rosato, G. P. Vanoli. 2010. “Carbon dioxide heat transfer coefficients and pressure drops during flow boiling: Assessment of predictive methods.” Int. J. Refrig. (33) 6: 1068 – 1085. [16] Yoon S. H., E. S. Cho, Y. W. Hwang, M. S. Kim, K. Min, Y. Kim. 2004 “Characteristics of evaporative heat transfer and pressure drop of carbon dioxide correlation development.” Int. J. Refrig (27), 2: 111 – 119. [17] Choi K.-I., A. S. Pamitran, C.-Y. Oh, J.-T. Oh. 2007 “Boiling heat transfer of R22, R134a and CO 2 in horizontal smooth minichannels.” Int. J. Refrig. (30) 8: 1336 – 1346. [18] H.-K. Oh, C. H. Son 2011. “Flow boiling heat transfer and pressure drop characteristics of CO 2 in horizontal tube of 4.57 mm inner diameter.” Appl. Therm. Eng. (31), 2–3: 163 – 172. [19] Dang C., N. Haraguchi, E. Hihara. 2010. “Flow boiling heat transfer of carbon dioxide inside a small-sized microfin tube.” Int. J. Refrig. (33), 4: 655 – 663. [20] Kim Y. J., J. M. Cho, M. . Kim. 2008. “Experimental study on the evaporative heat trans- fer and pressure drop of CO 2 flowing upward in vertical smooth and microfin tubes with diameter of 5 mm.” Int. J. Refrig., (31), 5: 771 – 779. [21] Wu J. et al. 2011. “Investigation of heat transfer and pressure drop of CO2 two-phase flow in a horizontal mini-channel.” Int. J. Heat Mass Transf. (54):, 2154 – 2162. [22] Cho J. M., M. S. Kim. 2007. “Experimental studies on the evaporative heat transfer and pressure drop CO 2 in smooth and micro-fin tubes of the diameters of 5 and 9.52 mm.” Int. J. Refrig. (30), 6: 986 – 994. [23] Zhao X., P. K. Bansal.2007. “Flow boiling heat transfer characteristic of CO 2 at low temperatures.” Int. J. Refrig. (30): 937 – 945. [24] Anwar Z., B. Palm, R. Khodabanden. 2015. “Flow boiling heat transfer, pressure drop and dryout characteristics of R1234yf: Experimental results and predictions.” Exp. Therm. Fluid Sci. (66): 137 – 149. [25] Copetti J. B., M. H. Macaganan, F. Zinani. 2013. “Experimental study on R-600a boiling in 2.6 mm tube.” Int. J. Refrig. (36): 325 – 334. [26] Wang C. C., C. S. Chiang, D. C. Lu. 1997. “Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube.” Exp Therm. Fluid Sci (15): 395 – 405. [27] Lu M.-C., J.-R. Tong, W. C-C. 2013. “Investigation of the two-phase convective boiling of HFO-1234yf in a 3.9 mm diameter tube.” Int. J. Heat Mass Transf. (65), 545 – 551. [28] Satioh S., C. Dang, Y. Nakamura, E. Hihara.2011. “Boiling heat transfer of HFO- -1234yf flowing in a smooth small-diameter horizontal tube.” Int. J. Refrig. (33): 1846 – 1853. [29] Kundu A., R. Kumar, A. Gupta. 2014. “Heat transfer characteristic and flow pattern during two-phase flow boiling of R134a and R407C in a horizontal smooth tube.” Exp. Therm. Fluid Sci., (57), 344 – 352. [30] Xu Y., X. Fang, D. Li, G. Li, Y. Yuan, A. Xu. 2016. “An experimental study of flow boiling frictional pressure drop of R134a and evaluaition of existing correlations.” Int. J. Heat Mass Transf.(98):150 – 163. [31] Mancin S., A. Diani, L. Rossetto. 2014. “R134a flow boiling heat transfer coefficient and pressure drop inside 3.4 mm ID microfin tube.” Energy Procedia (45): 6098 – 615. [32] Tibirçá C. B., Ribatski G. 2010. “Flow boiling heat transfer of R134a and R245fa in 2.3 mm tube.” Int. J. Heat Mass Transf. (53); 2459 – 2468. [33] Owhaib W., C. Martin-Callizo, B. Palm. 2004. “Evaporative heat transfer in vertical circular microchannels.” Appl. Therm. Eng. (24): 1241 – 1253. [34] Shiferaw D., T. G. Karayiannis, D. B. R. Kenning. 2009. “Flow boiling in a 1.1 mm tube with R134a: experimental results and comparison with model.” Int. J Therm. Sci. (48): 331 – 341. [35] Martin-Callizo C., R. Ali, B. Palm.2—7. “New experimental results of flow boiling of R134a in vertical microchannel,” in Heat Transfer Conference Proceedings, 2007. [36] Consolini L., J. R. Thome. 2009. “Micro-channel flow boiling heat transfer or R134a, R236fa and R245fa.” Microfluid Nanofluid (6): 731 – 746. [37] Mahmoud M. M., D. B. R. Kenning, T. G. Karayuannis. “Single and two phase heat transfer and pressure drop in a 0.52 mm vertical metallic tube,” in 7th Int. Conference in Enhanced, Compact and Ultra-compact Heat Exchangers: From Microscale Phenomena to Industrial Applications. [38] Ong C. I., J. R. Thome. 2009. “Flow boiling heat transfer of R134a, R236f and R245fa in a horizontal 1.030 mm circular channel.” Exp. Therm. Fluid Sci. (33): 651 – 663. [39] Del Col D., S. Bortolini, D. Torresin, A. Cavallini. 2011. “Flow boiling of R1234yf in a 1 mm diameter channel,” in Procedings of 23rd IIR International Congres of Refrigeration, 2011. [40] Diani A., S. Mancin, L. Rossetto. 2015. “Flow boiling heat transfer of R1234yf inside 3.4 mm ID microfin tube.” Exp. Therm. Fluid Sci. (66): 127 – 136. [41] Jakubowska B., D. Mikielewicz, M. Klugmann. 2019. “Experimental study and comparison with predictive methods for flow boiling heat transfer coefficient of HFE7000.” Int. J. Heat Mass Transf.(142): 118307. [42] Kandlikar S. G. 1990. “A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes.” J. Heat Transfer (112) 1: 219. [43] Xu Y., X. Fang, G. Li, D. Li. 2015. “An experimental investigation of flow boiling heat transfer and pressure drop of R134a in a horizontal 2.168 mm tube under hypergravity.” Int. J. Heat Mass Transf. (80): 597 – 606. [44] Xu Y., X. Fang, G. Li, D. Li.2016. “An experimental study of flow boiling heat transfer of R134a and evaluation of existing correlations.” Int. J. Heat Mass Transf. (92): 1143 – 1157. [45] Thome J. R. 1996. “Boiling of new refrigerants: a state-of-the art review.” Int. J. Refrig. (19) 7: 435 – 457. [46] Chen J. C. 1966. “Correlation for boiling heat transfer to saturated fluids in convective flow.” Ind. Eng. Chem. Process Des. Dev. (5) 3: 322 – 329. [47] Gungor K. E., R. H. S. Winterton. 1986. “A general correlation for flow boiling in tubes and annuli,” Int. J. Heat Mass Transf. (29): 351 – 358. [48] Wojtan L., T. Ursenbacher, J. R. Thome. 2005. “Investigation of flow boiling in horizontal tubes: Part II—Development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes.” Int. J. Heat Mass Transf. (48)14: 2970 – 2985. [49] Lillo G., R. Mastrullo, A. W. Mauro, L. Viscito. 2918. “Flow boiling heat transfer, dry-out vapor quality and pressure drop of propane (R290): Experiments and assessment of predictive methods.” Int. J. Heat Mass Transf. (126): 1236 – 1252. [50] Lemmon E. W., M. L. Huber, M. O. McLinden. 2013. “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1.” 2013.
Treść płatna
Jeśli masz wykupiony/przyznany dostęp -
zaloguj się
.
Skorzystaj z naszych propozycji zakupu!
Publikacja
CHŁODNICTWO- e-publikacja (pdf) z zeszytu 2020-4 , nr katalogowy 127762
licencja: Osobista
Produkt cyfrowy
Nowość
10.00 zł
Do koszyka
Zeszyt
CHŁODNICTWO- e-zeszyt (pdf) 2020-4
licencja: Osobista
Produkt cyfrowy
Nowość
35.00 zł
Do koszyka
Prenumerata
CHŁODNICTWO - prenumerata cyfrowa
licencja: Osobista
Produkt cyfrowy
Nowość
252.00 zł
Do koszyka
CHŁODNICTWO - papierowa prenumerata roczna + wysyłka
licencja: Osobista
Szczegóły pakietu
Nazwa
CHŁODNICTWO - papierowa prenumerata roczna
360.00 zł brutto
333.33 zł netto
26.67 zł VAT
(stawka VAT 8%)
CHŁODNICTWO - pakowanie i wysyłka
21.00 zł brutto
17.07 zł netto
3.93 zł VAT
(stawka VAT 23%)
381.00 zł
Do koszyka
CHŁODNICTWO - PAKIET prenumerata PLUS
licencja: Osobista
Szczegóły pakietu
Nazwa
CHŁODNICTWO - PAKIET prenumerata PLUS (Prenumerata papierowa + dostęp do portalu sigma-not.pl + e-prenumerata)
432.00 zł brutto
400.00 zł netto
32.00 zł VAT
(stawka VAT 8%)
432.00 zł
Do koszyka
Zeszyt
2020-4
Czasopisma
ATEST - OCHRONA PRACY
AURA
AUTO MOTO SERWIS
CHEMIK
CHŁODNICTWO
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
DOZÓR TECHNICZNY
ELEKTROINSTALATOR
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
GAZETA CUKROWNICZA
GAZ, WODA I TECHNIKA SANITARNA
GOSPODARKA MIĘSNA
GOSPODARKA WODNA
HUTNIK - WIADOMOŚCI HUTNICZE
INŻYNIERIA MATERIAŁOWA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MATERIAŁY BUDOWLANE
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZED KOROZJĄ
ODZIEŻ
OPAKOWANIE
PACKAGING REVIEW
POLISH TECHNICAL REVIEW
PROBLEMY JAKOŚCI
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD PAPIERNICZY
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ SPOŻYWCZY
RUDY I METALE NIEŻELAZNE
SZKŁO I CERAMIKA
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
WIADOMOŚCI ELEKTROTECHNICZNE
WOKÓŁ PŁYTEK CERAMICZNYCH