Czasopisma
Czasopisma
Czasopisma
ATEST - OCHRONA PRACY
ATEST - OCHRONA PRACY
AURA
AURA
AUTO MOTO SERWIS
AUTO MOTO SERWIS
CHEMIK
CHEMIK
CHŁODNICTWO
CHŁODNICTWO
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
DOZÓR TECHNICZNY
DOZÓR TECHNICZNY
ELEKTROINSTALATOR
ELEKTROINSTALATOR
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
Czasopisma
Czasopisma
Czasopisma
GAZETA CUKROWNICZA
GAZETA CUKROWNICZA
GAZ, WODA I TECHNIKA SANITARNA
GAZ, WODA I TECHNIKA SANITARNA
GOSPODARKA MIĘSNA
GOSPODARKA MIĘSNA
GOSPODARKA WODNA
GOSPODARKA WODNA
HUTNIK - WIADOMOŚCI HUTNICZE
HUTNIK - WIADOMOŚCI HUTNICZE
INŻYNIERIA MATERIAŁOWA
INŻYNIERIA MATERIAŁOWA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MATERIAŁY BUDOWLANE
MATERIAŁY BUDOWLANE
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZED KOROZJĄ
OCHRONA PRZED KOROZJĄ
Czasopisma
Czasopisma
Czasopisma
ODZIEŻ
ODZIEŻ
OPAKOWANIE
OPAKOWANIE
PACKAGING REVIEW
PACKAGING REVIEW
POLISH TECHNICAL REVIEW
POLISH TECHNICAL REVIEW
PROBLEMY JAKOŚCI
PROBLEMY JAKOŚCI
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD PAPIERNICZY
PRZEGLĄD PAPIERNICZY
Czasopisma
Czasopisma
Czasopisma
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ SPOŻYWCZY
PRZEMYSŁ SPOŻYWCZY
RUDY I METALE NIEŻELAZNE
RUDY I METALE NIEŻELAZNE
SZKŁO I CERAMIKA
SZKŁO I CERAMIKA
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
WIADOMOŚCI ELEKTROTECHNICZNE
WIADOMOŚCI ELEKTROTECHNICZNE
WOKÓŁ PŁYTEK CERAMICZNYCH
WOKÓŁ PŁYTEK CERAMICZNYCH
Menu
Menu
Menu
Prenumerata
Prenumerata
Publikacje
Publikacje
Drukarnia
Drukarnia
Kolportaż
Kolportaż
Reklama
Reklama
O nas
O nas
ui-button
Twój Koszyk
Twój koszyk jest pusty.
Niezalogowany
Niezalogowany
Zaloguj się
Zarejestruj się
Reset hasła
Czasopismo
|
PRZEGLĄD ELEKTROTECHNICZNY
|
Rocznik 2018 - zeszyt 2
Anizotropia stratności wybranych blach elektrotechnicznych
Anisotropy of loss density of chosen electrical steel sheets
10.15199/48.2018.02.23
Stanisław ŻUREK
Piotr BOROWIK
Krzysztof CHWASTEK
nr katalogowy: 111978
10.15199/48.2018.02.23
Streszczenie
W artykule wykazano wpływ anizotropii na właściwości blach elektrotechnicznych Przedstawiono prosty model matematyczny umożliwiający wyznaczenie stratności dla dowolnego kierunku wycięcia próbki. Model zweryfikowano wykorzystując dane pomiarowe dla wybranych gatunków blach
Abstract
In the paper the influence of anisotropy on properties of electrical steel sheets is proven. A simple mathematical model, which makes it possible to determine the angular dependence of loss density, is described. The model has been verified using measurement data for chosen steel sheets.
Słowa kluczowe
Anizotropia
modelowanie
stratność
blachy elektrotechniczne.
Keywords
Anisotropy
modeling
loss density
electrical steel sheets.
Bibliografia
[1] Shiozaki M., Kurosaki Y., Anisotropy of magnetic properties in non-oriented electrical steel sheets, Textures and Microstructures, 11 (1989), 159-170. [2] Tumański S., Investigations of the anisotropic behaviour of SiFe steel, Journal of Magnetism and Magnetic Materials 254- 255 (2003), 50-53. [3] Tumański S., Handbook of magnetic measurements, CRC Press/ Taylor & Francis Group, Boca Raton 2011. [4] Paltanea V., Paltanea Gh., Gavrila H., Magnetic anisotropy in silicon iron alloys, Electrical and Electronic Engineering 2 (6) (2012), 383-388. [5] Chwastek K., Anisotropic properties of non-oriented steel sheets, IET Electric Power Applications 7 (2013), 575-579. [6] Callen E. R., Callen H. B., Anisotropic magnetization, Journal of Physics and Chemistry of Solids 16 (1960), 310-328. [7] Soiński M., Moses A. J., Anisotropy in iron-based soft magnetic materials, Chapter 4 in Handbook of Magnetic Materials, Vol. 8 (Ed. K. H. J. Buschow), Elsevier, Amsterdam, 1995. [8] O’Handley R., Modern magnetic materials. Principles and applications, J. Wiley & Sons, New York 2000. [9] de Campos M. F., Landgraf F. J. G., Tschiptschin A. P., A method to estimate magnetic induction from texture in nonoriented electrical steels, Journal of Magnetism and Magnetic Materials 226-230 (2001), 1536-1538. [10] Landgraf F. J. G., Paolinelli S. C., Cunha M. A., de Campos M. F., Texture optimization in non-oriented electrical steels: the role of the Goss texture component, Materials Science Forum 495-497 (2005), 543-554. [11] Shin S., Schaefer R., DeCooman B. C., Anisotropic magnetic properties and domain structure in Fe-3%Si (110) steel sheet, Journal of Applied Physics 109 (2011), 07A307 (3 pages). [12] Gutierrez-Urrutia I., Böttcher A., Lahn L., Raabe D., Microstructure-magnetic property relations in grain-oriented electrical steels: Quantitative analysis of the sharpness of the Goss orientation, Journal of Materials Science 49 (1) (2014), 269-276. [13] Moses A. J., Importance of rotational losses in rotating machines and transformers, Journal of Materials Engineering and Performance 1 (2) (1992), 235-244. [14] Pluta W., Wpływ anizotropii magnetycznej blach elektrotechnicznych na straty mocy przy przemagnesowaniu obrotowym, rozprawa doktorska, Politechnika Łódzka, Łódź 2001. [15] Żurek S., Two-dimensional magnetization problems in electrical steel, PhD Thesis, Cardiff University, Cardiff, Wales (UK) 2005. [16] Anuszczyk J., Pluta W., Ferromagnetyki miękkie w polach obrotowych, WNT Warszawa 2009. [17] Pluta W., Badanie i właściwości wybranych ferromagnetyków przemagnesowywanych obrotowo, Przegląd Elektrotechniczny 4 (2010), 32-35. [18] Pfützner H., Mulasalihovic E., Yamaguchi H., Sabic D., Shilyashki G., Hofbauer F., Rotational magnetization in transformer cores - a review, IEEE Transactions on Magnetics 47 (11) (2011), 4523-4532. [19] Żurek S., Rotational magnetization. A phenomenon in threephase three-limb transformer cores, Transformers Magazine 2 (2) (2015), 44-53, http://www.transformers-magazine.com/tmvolumes/ v2-iss2.html [20] Sievert J., Two-dimensional magnetic measurements - history and achievements of the workshop, Przegląd Elektrotechniczny 9b (2011), 2-10. [21] Moses A. J., Possible future trends and research challenges related to 1 & 2 D magnetic properties of soft magnetic materials, Przegląd Elektrotechniczny 9b (2011), 11-16. [22] Hribernik B., Ambrož D., Proposal of a new anisotropy quality evaluation of nonoriented magnetic steel sheets, IEEE Transactions on Magnetics 26 (1990), 266-269. [23] Zhang Y., Eum Y. H., Xie D., Koh C. S., An improved engineering model of vector magnetic properties of grainoriented electrical steels, IEEE Transactions on Magnetics 44 (11) (2008), 3181-3184. [24] Song M., Yoon H., Yang H., Koh C. S., A generalized Chuatype vector hysteresis model for both the non-oriented and PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 2/2018 99 grain-oriented electrical steel sheets, IEEE Transactions on Magnetics 47 (5) (2011), 1146-1149. [25] Dlala E., Belahcen A., Fonteyn K., Belkasim M., Improving loss properties of the Mayergoyz vector hysteresis model, IEEE Transactions on Magnetics 46 (3) (2009), 918-924. [26] Kuczmann M., Measurement and simulation of vector hysteresis characteristics, IEEE Transactions on Magnetics 45 (11) (2009), 5188-5191. [27] Kuczmann M., Vector hysteresis measurement and simulation, Przegląd Elektrotechniczny 12 (2009), 92-95. [28] Handgruber P., Stermecki A., Bíró O., Goričan V., Dlala E., Ofner G., Anisotropic generalization of vector Preisach hysteresis models for nonoriented steels, IEEE Transactions on Magnetics 51 (3) (2015), 7300604. [29] Leite J. V., Sadowski N., Kuo-Peng P., Batistela N. J., Bastos J. P. A., de Espíndola A. A., Inverse Jiles-Atherton vector hysteresis model, IEEE Transactions on Magnetics 40 (4) (2004), 1769-1775. [30] Jagieła M., Calculation of core loss using the Jiles-Atherton model incorporated into magnetic field analysis, Archives of Electrical Engineering 56 (219) (2007), 57-69. [31] Li W., Kim I. H., Jang S. M., Koh C. S., Hysteresis modeling for electrical steel sheets using improved vector Jiles-Atherton hysteresis model, IEEE Transactions on Magnetics 47 (10) (2011), 3821-3824. [32] Chwastek K., Szczygłowski J., The effect of anisotropy in the modified Jiles-Atherton model of static hysteresis, Archives of Electrical Engineering 60 (1) (2011), 49-57. [33] Baghel A. P. S., Kulkarni S. V., Hysteresis modeling of the grain-oriented laminations with inclusion of crystalline and textured structure in a modified Jiles-Atherton model, Journal of Applied Physics 113 (4) (2013), 043908. [34] Szewczyk R., Application of Jiles-Atherton model for modelling magnetization characteristics of textured electrical steel magnetized in easy or hard axis, Progress in Automation, Robotics and Measuring Techniques, 293-302 (2015) In: Szewczyk R., Zieliński C., Kaliczyńska M. (eds) Progress in Automation, Robotics and Measuring Techniques. Advances in Intelligent Systems and Computing, vol 350. Springer, Cham, doi: 10.1007/978-3-319-15796-2_30 [35] Baghel A. P. S., Sai Ram B., Chwastek K., Daniel L., Kulkarni S. V., Hysteresis modelling of GO laminations for arbitrary inplane directions taking into account the dynamics of orthogonal domain walls, Journal of Magnetism and Magnetic Materials 418 (2016), 14-20. [36] Péra Th., Ossart Fl., Waeckerlé Th., Numerical representation for anisotropic materials based on coenergy modeling, Journal of Applied Physics 73 (1993), 6784-6786. [37] Cornut B., Kedous-Lebouc A., Waeckerlé Th., From metallurgy to modelling of electrical steels: a multiple approach to their behaviour and use based on physics and experimental investigations (invited paper), Journal of Magnetism and Magnetic Materials 160 (1996) 102-108. [38] Jesenik M., Goričan V., Trlep M., Hamler A., Štumberger B., Transient finite element magnetic field calculation metod in the anisotropic magnetic material based on the measured magnetization curves, Journal of Magnetism and Magnetic Materials 304 (2006) e820-e822. [39] Biró O., Außerhofer St., Preis K., Chen Y., A modified elliptic model of anisotropy in nonlinear magnetic materials, COMPEL 29 (2010), 1482-1492. [40] Chwastek K., Najgebauer M., Szczygłowski J., Wilczyński W., Modelling the influence of anisotropy on magnetic properties in grain-oriented steels, Przegląd Elektrotechniczny 3 (2011), 126-128. [41] Higuchi S., Nakao T., Takahashi Y., Tokumasu T., Fujiwara K., Ishihara Y., Modeling of two-dimensional magnetic properties based on one-dimensional magnetic measurement, IEEE Transactions on Magnetics 48 (11) (2012), 3486-3489. [42] Hao Wang, Chang-sheng Li, Tao Zhu, Hard magnetization direction and its direction with magnetic permeability of highly grain-oriented electrical steels, International Journal of Minerals, Metallurgy and Materials 21 (2014), 1077-1082. [43] Banach A., Mazgaj W., Szular Z., Estimation of power losses in dynamo steel sheets during axial magnetization, Przegląd Elektrotechniczny 12 (2015), 276-280. [44] Martin F., Singh D., Belahcen A., Rasilo P., Haavisto A., Arkkio A., Analytical model for magnetic anisotropy of non-oriented steel sheets, COMPEL 34 (5) (2015), 1475-1488. [45] Martin F., Singh D., Rasilo P., Belahcen A., Arkkio A., Model of magnetic anisotropy of non-oriented steel sheets for finite element method, IEEE Transactions on Magnetics 52 (3) (2016), 7002704, doi: 10.1109/TMAG.2015.2488100. [46] de Campos M. F., Anisotropy of steel sheets and consequence for Epstein test, in Proc. XVIII IMEKO Congress, 17-22.09.2006, Rio de Janeiro, Brazil. Available from: http://www.imeko.org/publications/wc-2006/PWC-2006-TC4- 037u.pdf [47] Chwastek K., Baghel A. P. S., de Campos M. F., Kulkarni S. V., Szczygłowski J., A description for the anisotropy of magnetic properties of grain-oriented steels, IEEE Transactions on Magnetics 51 (12) (2015), 6000905. [48] Chwastek K., Baghel A. P. S., Wodzyński A., Kulkarni S. V., Anisotropic properties of electrical steel, praca przedstawiona podczas konferencji CPEE’2015 Computational Problems of Electrical Engineering, 2-5.09.2015, Lwów, Ukraina, mat. konf. s. 21-23, IEEE Catalog Number CFP15A10-PRT, ISBN 978- 617-607-803-6. [49] Bunge H.-J., Texture analysis in materials science - mathematical methods, Butterworths, London, 1982. [50] Engler O., Randle V., Introduction to texture analysis. Macrostructure, microstructure, and orientation mapping, CRC Press/Taylor & Francis Group, Boca Raton 2010. [51] Hosford W. F., Caddell R. M., Metal forming: mechanics and metallurgy, Cambridge University Press, Cambirdge 2010. [52] Birsan M., Szpunar J. A., Anisotropy of power losses in textured soft magnetic materials, Journal of Applied Physics 80 (1997), 6915-6919. [53] Birsan M., Szpunar J. A., The influence of texture on power losses in nonoriented electrical steels, Journal of Applied Physics 81 (2) (1997), 821-823. [54] Penin Santos J., Landgraf F. J. G., Caixeta Guimarães G., Should Epstein strip arrangement be changed?, Journal of Magnetism and Magnetic Materials. 304 (2004), e571-e573. [55]Fiorillo F., Measurement and characterization of magnetic materials, Elsevier, Amsterdam 2004. [56] Sievert J., On the metrology of the magnetic properties of electrical sheet steel (invited paper), Przegląd Elektrotechniczny 5 (2005), 1-5. [57] Moses A. J., Philips P. S., Effects of stacking methods on Epstein-square power loss measurements, Proceedings IEE 124 (1977), 413-416. [58] Banach A., Mazgaj W., Power losses in typical dynamo steel sheets during the axial magnetization, Komel 4 (2014),195-199. [59] Warzecha A., Mazgaj W., Magnetization measurements in circle-shaped samples of typical dynamo steel sheets, Przegląd Elektrotechniczny 6 (2015), 96-99. [60] Wilczyński W, Wpływ technologii na właściwości magnetyczne rdzeni maszyn elektrycznych, Prace Instytutu Elektrotechniki 215 (2003), Wydawnictwo IEl, Warszawa [61] Żurek S., Rygał R., Soiński M., Asymmetry of magnetic properties of conventional grain-oriented electrical steel, Przegląd Elektrotechniczny 1 (2009), 16-19.
Treść płatna
Jeśli masz wykupiony/przyznany dostęp -
zaloguj się
.
Skorzystaj z naszych propozycji zakupu!
Publikacja
e-Publikacja (format pdf) - nr 111978 "Anizotropia stratności wy..."
licencja: Osobista
Produkt cyfrowy
10.00 zł
Do koszyka
Zeszyt
PRZEGLĄD ELEKTROTECHNICZNY - e-zeszyt (pdf) 2018-2
licencja: Osobista
Produkt cyfrowy
55.00 zł
Do koszyka
Prenumerata
PRZEGLĄD ELEKTROTECHNICZNY - prenumerata cyfrowa
licencja: Osobista
Produkt cyfrowy
Nowość
762.00 zł
Do koszyka
PRZEGLĄD ELEKTROTECHNICZNY - PAKIET prenumerata PLUS
licencja: Osobista
Szczegóły pakietu
Nazwa
PRZEGLĄD ELEKTROTECHNICZNY - PAKIET prenumerata PLUS (Prenumerata papierowa + dostęp do portalu sigma-not.pl + e-prenumerata)
1002.00 zł brutto
927.78 zł netto
74.22 zł VAT
(stawka VAT 8%)
1002.00 zł
Do koszyka
PRZEGLĄD ELEKTROTECHNICZNY - papierowa prenumerata roczna + wysyłka
licencja: Osobista
Szczegóły pakietu
Nazwa
PRZEGLĄD ELEKTROTECHNICZNY - papierowa prenumerata roczna
960.00 zł brutto
888.89 zł netto
71.11 zł VAT
(stawka VAT 8%)
PRZEGLĄD ELEKTROTECHNICZNY - pakowanie i wysyłka
42.00 zł brutto
34.15 zł netto
7.85 zł VAT
(stawka VAT 23%)
1002.00 zł
Do koszyka
Zeszyt
2018-2
Czasopisma
ATEST - OCHRONA PRACY
AURA
AUTO MOTO SERWIS
CHEMIK
CHŁODNICTWO
CIEPŁOWNICTWO, OGRZEWNICTWO, WENTYLACJA
DOZÓR TECHNICZNY
ELEKTROINSTALATOR
ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA
GAZETA CUKROWNICZA
GAZ, WODA I TECHNIKA SANITARNA
GOSPODARKA MIĘSNA
GOSPODARKA WODNA
HUTNIK - WIADOMOŚCI HUTNICZE
INŻYNIERIA MATERIAŁOWA
MASZYNY, TECHNOLOGIE, MATERIAŁY - TECHNIKA ZAGRANICZNA
MATERIAŁY BUDOWLANE
OCHRONA PRZECIWPOŻAROWA
OCHRONA PRZED KOROZJĄ
ODZIEŻ
OPAKOWANIE
PACKAGING REVIEW
POLISH TECHNICAL REVIEW
PROBLEMY JAKOŚCI
PRZEGLĄD ELEKTROTECHNICZNY
PRZEGLĄD GASTRONOMICZNY
PRZEGLĄD GEODEZYJNY
PRZEGLĄD MECHANICZNY
PRZEGLĄD PAPIERNICZY
PRZEGLĄD PIEKARSKI I CUKIERNICZY
PRZEGLĄD TECHNICZNY. GAZETA INŻYNIERSKA
PRZEGLĄD TELEKOMUNIKACYJNY - WIADOMOŚCI TELEKOMUNIKACYJNE
PRZEGLĄD WŁÓKIENNICZY - WŁÓKNO, ODZIEŻ, SKÓRA
PRZEGLĄD ZBOŻOWO-MŁYNARSKI
PRZEMYSŁ CHEMICZNY
PRZEMYSŁ FERMENTACYJNY I OWOCOWO-WARZYWNY
PRZEMYSŁ SPOŻYWCZY
RUDY I METALE NIEŻELAZNE
SZKŁO I CERAMIKA
TECHNOLOGIA I AUTOMATYZACJA MONTAŻU
WIADOMOŚCI ELEKTROTECHNICZNE
WOKÓŁ PŁYTEK CERAMICZNYCH