Wyniki 1-5 spośród 5 dla zapytania: authorDesc:"Michał KONARSKI"

Electricity measurement accuracy in the smart metering system DOI:10.15199/48.2015.12.04

Czytaj za darmo! »

The smart metering to the power system implementation significantly changes the way of measurements and settlements in the electricity sector. This paper presents an analysis of realized measurement accuracy and the key information about the smart metering and the components of the advanced metering infrastructure. It also shows the scope of authors' ongoing research on the temperature effect of electricity measurement accuracy in the smart metering system. Streszczenie. Wprowadzenie do systemu elektroenergetycznego inteligentnych systemów pomiarowych znacząco zmienia sposób przeprowadzanych pomiarów i rozliczeń. W artykule przedstawiono analizę dokładności realizowanych pomiarów oraz zaprezentowano kluczowe informacje dotyczące inteligentnego systemu pomiarowego i zaawansowanej infrastruktury pomiarowej. Przedstawiono również zakres aktualnie prowadzonych przez autorów niniejszego artykułu prac badawczych, dotyczących wpływu temperatury na dokładność pomiarów energii elektrycznej w inteligentnych systemach pomiarowych. (Dokładność pomiarów energii elektrycznej w inteligentnych systemach pomiarowych). Keywords: electricity measurement, measurement accuracy, smart metering, smart grid. Słowa kluczowe: pomiary energii elektrycznej, dokładność pomiarów, inteligentne systemy pomiarowe, sieć inteligentna. Introduction The smart grid implementation in Poland recently definitely accelerated. Successful pilot programs resulted in the beginning of new, large-scale investments. The smart metering system is an essential part of the smart grid. The smart grid can be described as a modernized electricity grid supplemented by a digital two-way communication system between a supplier and a consumer and smart measurement and monitoring systems [1]. The main smart grid concept is an integration of activities of all participants in the process of generation, transmission, distribution and consumption of electricity, in order to deliver it in an [...]

The temperature effect on measurement accuracy of the smart electricity meter DOI:10.15199/48.2016.08.40

Czytaj za darmo! »

The paper presents an analysis of ambient temperature influence on measurement accuracy of the smart electricity meter for different values of load current, voltage and frequency. The research scope was covered by the operating temperature range from -40°C to +70°C, which is consistent with the requirements of applicable standards and legal regulations. A meter used in the conducted tests was Iskra MT372 model, which is currently being installed at final customers. Streszczenie. W artykule przedstawiono analizę wpływu temperatury otoczenia na dokładność pomiarów inteligentnego licznika energii elektrycznej dla różnych wartości prądu obciążenia, napięcia i częstotliwości. Badania swoim zakresem objęły temperatury od -40ºC do +70ºC, co jest zgodne z wymaganiami stawianymi inteligentnym licznikom zarówno przez normy, jak i regulacje prawne. W badaniach wykorzystano obecnie instalowany u odbiorców licznik typu Iskra MT372. (Wpływ temperatury na dokładność inteligentnego licznika energii elektrycznej). Keywords: electricity measurement, measurement accuracy, smart metering, smart electricity meters. Słowa kluczowe: pomiary energii elektrycznej, dokładność pomiarów, inteligentne systemy pomiarowe, inteligentne liczniki. Introduction The smart meters are the main parts of the smart metering system, which implementation to the power system is actually one of the most important challenges facing the Polish and the European electricity sector. This process is related to applicable legal regulations, such as the EU Directive 2009/72/EC [1], which requires Member States to equip in smart metering systems by 2020 at least 80% of customers. In the Polish case, this objective is planned to achieve in the year 2024 and it means the need to install approximately 15 million smart electricity meters, with the current implementation level of only 2,7% [2]. One of the most significant aspects of the smart metering implementation, both from the [...]

The use of power restoration systems for automation of medium voltage distribution grid DOI:10.15199/48.2018.07.42

Czytaj za darmo! »

Growing quality and continuity requirements of energy customers and a quality regulation model introduced by the Energy Regulatory Office require from the Distribution System Operators (DSOs) to constantly develop their grids to improve the power supply reliability. The new model of regulation was introduced to reduce the values of reliability indices in Poland which, despite increased investments, still significantly deviate from the European average. The quality regulation model assumes that the following indicators will have a direct impact on the DSOs regulated revenue:  SAIDI - System Average Interruption Duration Index, covering faults over 3 minutes, measured in minutes per customer,  SAIFI - System Average Interruption Frequency Index, covering faults over 3 minutes, measured in the number of breaks per customer,  Time of realization of customer grid connection, measured in calendar days per connected customer,  Time of measurement and billing data transmission, measured in calendar days per customer. The SAIDI and SAIFI indices are the most important indicators for managing existing power grid infrastructure. Achieving the requirements in this field also seems to be the biggest challenge of the new regulation model. According to the quality regulation, the distribution companies are required to reduce SAIDI and SAIFI by 50% to year 2020, at the base year 2015 [1,2]. An important factor affecting fault duration is the time necessary for fault detection and appropriate grid reconfiguration. After the occurrence of grid disturbance (short-circuit or earth fault) it is generally possible to make an appropriate switching, resulting in the maximum reduction of the number of consumers without power supply. Properly fast actions in this area have a direct impact on SAIDI - by maximum reduction of fault duration for customers who can be supplied by grid reconfiguration, as well as SAIFI - b[...]

Application of the UHF method for partial discharges measurement in high voltage cable lines DOI:10.15199/48.2019.06.16

Czytaj za darmo! »

The growing requirements of customers in the scope of continuity of electricity supply in connection with the regulatory model, newly introduced by the Energy Regulatory Office, require distribution companies to constantly develop their grids to improve the reliability of power supply. The new model of regulation was introduced to reduce the value of reliability indicators in Poland, which, despite the significant increase in investment outlays in the distribution grid in recent years, still significantly deviate from the European average. For example, in 2016 in Poland System Average Interruption Duration Index (SAIDI) was 272 minutes/recipient, and System Average Interruption Frequency Index (SAIFI) was 3.46 interruptions/recipient. The average values of these indicators for the European Union were in the same year at the level of 170 minutes/recipient in the case of SAIDI (at the lowest value of approx. 20) and 1.75 interruptions /recipient in the case of the SAIFI indicator (at the lowest value of approx. 2) [1]. According to the quality regulation, distribution companies are required to reduce SAIDI and SAIFI indices by 50% by 2020, adopting the base year for 2015 [2]. Despite the fact that the qualitative regulatory model is in force for a few years, distribution companies are still far from reaching the assumed goals, which is mainly due to the sensitivity of the existing energy infrastructure to various types of failures. The Polish Power Grid is still mainly an overhead grid, which makes it particularly sensitive to damage caused by atmospheric phenomena. An example of the scale of the impact of weather phenomena on the reliability of power supply is the year 2017, when rapid storms combined with strong winds caused extensive damage to grids, which resulted in a significant increase in reliability indicators (for some Distribution System Operators even more than 2 times compared to 2016) [3]. The 2017 events showe[...]

Zmiany w instalacjach stacjonarnych a spełnienie wymagań emisji przewodzonej


  Wraz z wejściem w życie dyrektywy EMC 204/108 EMC [1] wymaga się, aby tzw. instalacje stacjonarne spełniały wymagania zawarte w dyrektywie, tzn. nie wprowadzały różnorodnych zaburzeń elektromagnetycznych występujących w danym środowisku elektromagnetycznym i nie były na nie podatne. Równocześnie wielu twórców instalacji nie pamięta lub nie chce przyjąć do wiadomości, iż: instalacja stacjonarna oznacza szczególną kombinację kilku rodzajów aparatury oraz - w stosownych przypadkach - innych urządzeń, montowanych, instalowanych i których przeznaczeniem jest stałe użytkowanie w z góry określonym miejscu [1]. Taka definicja instalacji stacjonarnych w szczególności obejmuje systemy alarmowe i zobowiązuje wykonawców do wystawienia końcowej deklaracji zgodności dla danej instalacji. W wielu przypadkach twórcy danej instalacji uważają, iż zgodność systemu powinien wykazywać producent sprzętu. Niestety, niejednokrotnie - mimo dobrej woli producentów - instalacje stacjonarne może cechować niekompatybilność z powodu drobnych odstępstw dokonywanych przez instalatorów w stosunku do b[...]

 Strona 1