**Streszczenie**

Doubly-fed induction machine is usually used in variable-speed electric drives, where the rotor speed is in the vicinity of the synchronous speed. Finite-element-method model has been built and several studies, i. e. start up, sudden load change and fan drive, have been performed in order to verify the machine behaviour in supersynchronous motor operation. The simplest form of control (open-loop U/f control) has been used for rotor voltage supply, while the stator was connected directly to the public network.

**Słowa kluczowe:**

*doubly-fed induction machine, supersynchronous motor operation, open-loop control*

**Abstract**

Maszyna indukcyjna dwustronnie zasilana jest zwykle używana w napędach elektrycznych o zmiennej prędkości, gdzie prędkość wirnika jest zbliżona do prędkości synchronicznej. Opracowano model w oparciu o metodę elementów skończonych. Przeprowadzono doświadczenia, w których zmieniano parametry rozruchu, obciążenie i wentylator w celu sprawdzenia zachowania maszyny w trybie pracy silnika supersynchronicznego. Najprostsza forma sterowania (sterowanie U/f w otwartej pętli) została wykorzystana do zasilania napięciowego wirnika, podczas gdy stojan został podłączony bezpośrednio do sieci publicznej.

**Keywords:**

*maszyna indukcyjna dwustronnie zasilana, supersynchroniczna praca silnika, sterowanie w pętli otwartej*

Introduction Doubly-fed induction machine (DFIM) is usually used in large-power variable-speed drives with limited range of speed in the vicinity of the synchronous speed using bidirectional power converter [1-5], e. g. wind turbines, large pumps etc. Stator is connected directly to the public network (400 V and 50 Hz in Europe), whereas rotor is connected to the same network via power converter with adjustable voltage and frequency (Fig. 1). Fig.1. Power flow in the drive system with DFIM and power converter If power converter (rotor voltage source) allows only unidirectional power flow (Fig. 1), i. e. from the network to the machine (diode rectifier at the input side instead of the transistor bridge), then the operational area is limited to the supersynchronous speeds [6-7], assuming that the machine operates as a motor (Fig. 2). The power rating of the rotor voltage source is a fraction of the total power and it increases with increasing speed range [8-10]. In the steady-state motor operation, the rotor rotates in the supersynchronous area with the mechanical speed, which is defined as the sum of the rotational frequency of the stator and rotor rotating magnetic field, divided by the number of pole pairs: (1) p ω ω Ω 1 2 + = where: Ω - mechanical speed in [1/s], ω1/ω2 - angular frequency of the stator/rotor voltage in [1/s], p - number of pole pairs. Fig.2. Supersynchronous motor operation area (grey) Simulated drive system The two-dimensional finite-element-method (FEM) model (Fig. 3) with analytically calculated resistances and end-winding leakage inductances was built in order to obtain as accurate results as possible. The machine data are given in Table 1. The scalar open-loop control with variable voltage-to-frequency ratio (U/f control) has been used for the rotor voltage source in the simulations. Namely, the U/f control it is one of the simplest, easy-to-design and low-cost m [...]

## Prenumerata

**Bibliografia**

[1] Boldea I . , Nasar S. A., The Induction Machines Design
Handbook, Boca Raton: CRC Press, 2010

[2] Al ias A. , Rahim N. A. , Hus sain M. A. , Bidirectional
Three Phase Power Converter, IEEE First Conference on
Clean Energy and Technology, 2011

[3] Yaramasu V., Bin W., Sen P. C., Kouro S.,
Nar imani M., High-Power Wind Energy Conversion
Systems: State-of-the-Art and Emerging Technologies,
Proceedings of the IEEE, 103 (2015), No. 5, 740-788

[4] Mul jadi E. , Singh M. , Gevorgian V., Doubly Fed
Induction Generator in an Offshore Wind Power Plant Operated
at Rated V/Hz, IEEE Energy Conversion Congress and
Exhibition, 2012

[5] Kumar N., Chelliah T. R., Srivastava S. P., Analysis
of doubly-fed induction machine operating at motor mode
subjected to voltage sag, Engineering Science and
Technology, an International Journal, 19 (2016), 1117-1131

[6] Shin K. H. , Lipo T. A. , A Super-synchronous Doubly Fed
Induction Generator Option for Wind Turbine Applications,
IEEE Energy Conversion Congress and Exposition (ECCE),
2016

[7] Eskander M. N., Saleh M. A., El-Hagry M. M. T.,
Performance of Double Fed Induction Machine at Sub- and
Super-Synchronous Speed in Wind Energy Conversion
System, Journal of power electronics, 9 (2009), 575-581

[8] Feehally T., Apsley J. M., The Doubly Fed Induction
Machine as an Aero Generator, IEEE Transactions on Industry
Applications, 51 (2015), No. 4, 3462-3471

[9] L i H. , Chen Z. , Overview of different wind generator systems
and their comparisons, IET Renewable Power Generation, 2
(2008), No. 2, 123-138

[10] Rawal C. S. , Mul la A. M. , An AC-AC Converter for
Doubly Fed Induction Generator Driven By Wind Turbine,
International Journal of Scientific Research Publications, 4
(2014), No. 12, 1-7

[11] Hannan M. A., Ali J. A., Mohamed A. Hussain A.,
Optimization techniques to enhance the performance of
induction motor drives: A review, Renewable and Sustainable
Energy Reviews, 81 (2018), No. 2, 1611-1626

[12] Smith A., Gadoue S., Armstrong M., Finch J . ,
Improved method for the scalar control of induction motor
drives, IET Electric Power Applications, 7 (2013), No. 6,
487-498

[13] Liu J., Nondahl T. A., Schmidt P. B., Royak S.,
Rowan T. M. , Generalized Stability Control for Open-Loop
Operation of Motor Drives, IEEE Transactions on Industry
Applications, 53 (2017), No. 3, 2517-2525